A Self-Supervised Contrastive Learning Framework for Aspect Detection

Overview

AspDecSSCL

A Self-Supervised Contrastive Learning Framework for Aspect Detection

image image image image image image

This repository is a pytorch implementation for the following AAAI'21 paper:

A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection

Tian Shi, Liuqing Li, Ping Wang, Chandan K. Reddy

Video Presentation

Requirements

  • Python 3.6.9
  • argparse=1.1
  • torch=1.4.0
  • sklearn=0.22.2.post1
  • numpy=1.18.2
  • gensim=3.8.3

Dataset

You can download processed dataset from here. Place them along side with AapDecSSCL.

|--- AspDecSSCL
|--- Data
|    |--- bags_and_cases
|    |--- restaurant
|    |    |--- dev.txt
|    |    |--- test.txt
|    |    |--- train.txt
|    |    |--- train_w2v.txt
|--- cluster_results (results, automatically build)
|--- nats_results (results, automatically build)
|

Train your model from scratch

Prepare word and aspect embeddings.

Train word2vec: python3 run.py --task word2vec

Run Kmeans: python3 run.py --task kmeans

Check Kmeans Keywords python3 run.py --task kmeans-keywords

Self-supervised Learning (Teacher Model)

SSCL Training python3 run.py --task sscl-train

Before validation, you need to perform aspect mapping. There is a file aspect_mapping.txt in nats_results. For general, please change nomap to none. Other aspects should use their names. Please check test.txt to validate the names.

SSCL validation python3 run.py --task sscl-validate

SSCL testing python3 run.py --task sscl-test

SSCL evaluate python3 run.py --task sscl-evaluate

SSCL teacher python3 run.py --task sscl-teacher

SSCL clean results python3 run.py --task sscl-clean

Student Model

SSCLS training python3 run.py --task student-train

SSCLS validation python3 run.py --task student-validate

SSCLS testing python3 run.py --task student-test

SSCLS testing python3 run.py --task student-evaluate

SSCLS clean python3 run.py --task student-clean

Citation

@article{shi2020simple,
  title={A Simple and Effective Self-Supervised Contrastive Learning Framework for Aspect Detection},
  author={Shi, Tian and Li, Liuqing and Wang, Ping and Reddy, Chandan K},
  journal={arXiv preprint arXiv:2009.09107},
  year={2020}
}
Owner
Tian Shi
NLP and machine learning for news and online reviews.
Tian Shi
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
ComputerVision - This repository aims at realized easy network architecture

ComputerVision This repository aims at realized easy network architecture Colori

DongDong 4 Dec 14, 2022
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
Official implementations of PSENet, PAN and PAN++.

News (2021/11/03) Paddle implementation of PAN, see Paddle-PANet. Thanks @simplify23. (2021/04/08) PSENet and PAN are included in MMOCR. Introduction

395 Dec 14, 2022
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022