A data-driven maritime port simulator

Related tags

Deep Learningpyseidon
Overview

PySeidon - A Data-Driven Maritime Port Simulator 🌊

Image of the simulation software

Extendable and modular software for maritime port simulation.

This software uses entity-component system approach making it highly customizable for various end goals and easily built upon.

Overview

PySeidon was primarily designed for port scenario testing, but can be used for a variety of other tasks. Software can be adapted to simulate any maritime port provided that the required data is available. The simulator can be tested with different factors, such as:

  • New/different anchorage location
  • Different number of tugboat/pilots available
  • Different priority order depending on ship class/size
  • Etc...

PySeidon's output can then give useful insights whether the given change improves certain Key Performance Indicators (check this repository for scripts to analyse simulation results).

PySeidon can be used to create new data for various downstream tasks (e.g. anomaly detection), approximate impact on Key Performance Indicators of some decision, novelty introduced in a port. The supplemental visualization software can be used to analyse general (or created by simulation) AIS data over time or analyse simulation states (for debugging).

Installation and Demo

The framework is bundled with an example model to get you started. To run it first install the dependencies by running pip install -r requirements.txt. Pip might complain about libgeos not being installed on your system. On Ubuntu you can install it by running sudo apt-get install libgeos-dev.

Once the required libraries are installed run the example model with the following command (it may take a bit for the first vessel to spawn)

python main.py          \
    --out sim-output    \
    --step 10           \
    --verbose y         \
    --graphics y        \
    --cache y           \
    --seed 567

Features

  • Simulation of the following agents and infrastructure elements
    • Agents: vessel, tugboats, pilots
    • Infrastructure components: berths, anchorages, tugboat rendezvous and storage locations, pilot rendezvous and storage locations
    • Introduction of anomalies such as randomized berth inspections, tugboat malfunctions, anomalous vessel velocity. These can be used to create datasets that are currently not available
  • Visualization of the simulation: infrastructure components and agents, including an overview of vessel and berth information at any moment in time
  • Simulation of anomalies: random berth inspection, tugboat malfunctions, unusual vessel velocities
  • Clean way of conducting experiments of the simulation (multiple runs, no graphics, aggregating output data of the simulation)
  • The simulation engine relies on the input data, minimal actual code modification (model and main.py) is required to adapt to different maritime ports if no additional features are to be implemented

Documentation

For detailed instructions how to install and use PySeidon, see the Documentation.

Future work

  • Various external factors such as weather, tide, etc.
  • Implement proper nautical rules
  • Loading simulation from a saved state
  • GUI to enable non-experts be able to use the software
  • Boatmen agent
  • Better vessel acceleration model, PID controller
  • Automatic data analysis at the end of simulation
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022