Neural models of common sense. 🤖

Related tags

Deep Learningrainbow
Overview

Unicorn on Rainbow

Neural models of common sense.

This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a New Multitask Benchmark. Unicorn on Rainbow introduces a new evaluation, the cost equivalent curve, which compares models in terms of their cost-benefit trade offs. Using cost equivalent curves, we conduct a large-scale empirical study of intermediate-task transfer for common sense on a new benchmark collection of commonsense reasoning datasets, Rainbow. With findings from this study, we create a new state-of-the-art model for commonsense reasoning: Unicorn.

Jump to a section of the readme to accomplish different goals:

  • Rainbow: Read about and download data for Rainbow, our new commonsense reasoning benchmark.
  • Unicorn: Get up and running with Unicorn, our state-of-the-art commonsense reasoning model.
  • Cost Equivalent Curves: Learn how to generate cost equivalent curves for your own predictions.
  • Experimental Results: Download and analyze the results from our hundreds of experiments.
  • Setup: Get set up to run the code in this repository.
  • Quickstart: Run the code in this repo.
  • Citation: Cite the Unicorn on Rainbow paper.
  • Contact: Reach out with questions or comments.

Note: This repository is intended for research. There is no intention for ongoing maintenance.

Rainbow

Rainbow brings together six pre-existing commonsense reasoning benchmarks: aNLI, Cosmos QA, HellaSWAG, Physical IQa, Social IQa, and WinoGrande. These commonsense reasoning benchmarks span both social and physical common sense.

Note: Rainbow pins these datasets to specific versions. To make sure you're using the correct data, please download those versions below.

Getting the Data

Rainbow preprocesses all of the datasets into a text-to-text format for ease of modeling.

Alternatively, you can download the individual tasks and preprocess them yourself.

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

Submitting to the Leaderboard

If you develop a model for Rainbow, please feel free to submit to the leaderboard!

Unicorn

Unicorn (a UNIversal COmmonsense Reasoning Model) solves commonsense reasoning tasks in the text-to-text format. In principle, Unicorn may be trained on any NLP task, simply feed it text input and ask it to predict text output. Unicorn derives from T5, supercharging it for commonsense reasoning tasks and achieving state-of-the-art across a number of popular benchmarks, including Rainbow and CommonsenseQA.

To try Unicorn on your own data, first download the weights then fine-tune and evaluate it on your own data.

Downloading the Weights

To run Unicorn, you'll first need to download its weight files into a directory or path on Google Cloud. Using gsutil:

gsutil cp -r \
  gs://ai2-mosaic-public/projects/rainbow/v1.0/unicorns/lr-2e-3_batch-size-32
  $DST

Where $DST is the destination directory.

Reproducing our Results

In Unicorn on Rainbow, we trained different Unicorns that were first multitasked on Rainbow using different hyper-parameters. The checkpoint we've made available had the best performance most often. If you need the other checkpoints, please email the authors.

Cost Equivalent Curves

Cost equivalent curves compare the cost-benefit trade offs different techniques offer. In particular, cost equivalent curves plot the baseline and new technique's equivalent costs, or the costs where they achieve the same performance. For example, if the cost is measured as the number of examples and performance is measured by accuracy, then the cost equivalent curve shows how many examples the baseline needs to match the new technique's accuracy.

The plot_cost_equivalent_curves function in bin/create-multi-experiment-figures.py offers example code for how to create cost equivalent curves in Python.

Stay Tuned! We'll soon be releasing an easy-to-use, standalone package for creating cost equivalent curves. Check back here for it in the future.

Experimental Results

For Unicorn on Rainbow, we ran hundreds of experiments. We've made available the results from all those experiments in order to facilitate future research. For example, you may want those thousands of training curves to study hyper-parameter tuning or how loss evolves over training.

Among other things, you'll find:

  • predictions on dev from every checkpoint saved during training
  • training curves (training step vs. loss)
  • learning curves (dataset size vs. accuracy)
  • hyper-parameter tuning
  • all tables and figures from the paper
  • and more...

Our hope is that researchers can reuse this large collection of experiments to derive new practical and research insights.

Downloading the Results

Five collections of results are available:

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

NOTE: The learning curves experiments varied the number of training examples up to 16,000; however, CommonsenseQA has fewer than 16,000 training examples. Thus, for CommonsenseQA numbers higher than 9,741 are truncated to that size. This subtlety is taken care of by the data processing pipeline when the experiments are processed into the results tables, so it only affects rainbow-predictions.tar.gz and rainbow-experiments.tar.gz.

Replicating Our Analysis Pipeline

All the scripts to replicate our analysis pipeline reside in bin/. In order to run the scripts, you'll need to get set up for development.

The overall pipeline is as follows:

+----------------------------+
| rainbow-predictions.tar.gz |
+----------------------------+
              |
              | (bin/organize-experiments)
              V
+----------------------------+
| rainbow-experiments.tar.gz |
+----------------------------+
              |
              | (bin/generate-tables.py)
              V
  +------------------------+
  | rainbow-results.tar.gz |
  +------------------------+
         |         |
         |         | (bin/generate-latex-tables.py)
         |         V
         |     +-----------------------------+
         |     | rainbow-latex-tables.tar.gz |
         |     +-----------------------------+
         |
         | (bin/create-single-experiment-figures.py)
         | (bin/create-multi-experiment-figures.py)
         V
+------------------------+
| rainbow-figures.tar.gz |
+------------------------+

To run the pipeline, start by downloading rainbow-predictions.tar.gz (see Downloading the Results above).

Use bin/organize-experiments to produce rainbow-experiments.tar.gz:

$ tar -xf rainbow-predictions.tar.gz
$ bin/organize-experiments rainbow-predictions $DST

Where $DST is the desired destination directory (for example the current directory, .).

Use bin/generate-tables.py to produce rainbow-results.tar.gz:

$ bin/generate-tables.py rainbow-experiments rainbow-results

Use bin/create-single-experiment-figures.py and bin/create-multi-experiment-figures.py to create rainbow-figures.tar.gz:

$ bin/create-single-experiment-figures.py rainbow-results rainbow-figures/single-experiment
$ bin/create-multi-experiment-figures.py rainbow-results rainbow-figures/multi-experiment

And use bin/generate-latex-tables.py to produce rainbow-latex-tables.tar.gz:

$ bin/generate-latex-tables.py rainbow-results rainbow-latex-tables

All scripts except bin/organize-experiments are also self-documenting, so pass --help to any of them for more information.

Setup

This project requires Python 3.6 or above.

First, install the project's dependencies:

./bin/install

Next, make sure you have the following environment variables set:

  1. RAINBOW_DATASETS_DIR: The directory for storing all relevant datasets.
  2. RAINBOW_PREPROCESSED_DATASETS_DIR: The directory for storing the preprocessed dataset split files.
  3. RAINBOW_TFDS_DATASETS_DIR: The directory for storing the TFDS (tensorflow datasets) datasets.

Training requires TPUs. For training, all directories should point to Google Cloud Storage prefixes. Additionally, you'll need the following environment variables:

  1. PROJECT: Your Google Cloud project's ID.
  2. ZONE: Your Google Cloud virtual machine's zone.
  3. TPU_NAME: Your TPU's name.
  4. TPU_TOPOLOGY: Your TPU's topology.

Then, download and prepare all the datasets for text-to-text modeling:

$ ./bin/prepare.py --help
Usage: prepare.py [OPTIONS]

  Prepare all relevant datasets for text-to-text modeling.

  Download to and read the datasets from --src, transform them into CSVs
  suitable for text-to-text models, then write the results to --dst. Google
  storage paths are supported.

Options:
  --src TEXT        The directory to which to download all the relevant
                    datasets. Defaults to the RAINBOW_DATASETS_DIR environment
                    variable.  [required]
  --dst TEXT        The directory to which to write the preprocessed dataset
                    files. Defaults to the RAINBOW_PREPROCESSED_DATASETS_DIR
                    environment variable.  [required]
  --force-download  Force downloads of all the datasets, otherwise only
                    missing datasets will be downloaded.
  --help            Show this message and exit.

Finally, verify your installation:

./bin/verify

Quickstart

Before following this section, make sure you've done the Setup.

Fine-tuning

To fine-tune the model, use bin/fine-tune.py:

$ ./bin/fine-tune.py --help
Usage: fine-tune.py [OPTIONS] MIXTURE RESULTS_DIR

  Fine-tune the model on MIXTURE, writing results to RESULTS_DIR.

Options:
  --pretrained-model TEXT         The path to or name of the pretrained model.
                                  Defaults to 3B.
  --n-steps INTEGER               The number of gradient updates. Defaults to
                                  25,000.
  --learning-rate FLOAT           The learning rate to use for training.
                                  Defaults to 3e-3.
  --batch-size INTEGER            The batch size to use for training. For
                                  efficient training on the TPU, choose a
                                  multiple of either 8 or 128. Defaults to 16.
  --model-parallelism INTEGER     The degree of model parallelism to use.
                                  Defaults to 8.
  --save-checkpoints-steps INTEGER
                                  The number of steps to take before saving a
                                  checkpoint. Defaults to 5000.
  --n-checkpoints-to-keep INTEGER
                                  The number of checkpoints to keep during
                                  fine-tuning. Defaults to 4.
  --tpu-name TEXT                 The name of the TPU. Defaults to the
                                  TPU_NAME environment variable.  [required]
  --tpu-topology TEXT             The topology of the TPU. Defaults to the
                                  TPU_TOPOLOGY environment variable.
                                  [required]
  --help                          Show this message and exit.

Evaluation

To evaluate the model, use bin/evaluate.py:

$ ./bin/evaluate.py --help
Usage: evaluate.py [OPTIONS] MIXTURE RESULTS_DIR

  Evaluate the model located at RESULTS_DIR on MIXTURE.

Options:
  --batch-size INTEGER         The batch size to use for prediction. For
                               efficient prediction on the TPU, choose a
                               multiple of either 8 or 128. Defaults to 64.
  --model-parallelism INTEGER  The degree of model parallelism to use.
                               Defaults to 8.
  --tpu-name TEXT              The name of the TPU. Defaults to the TPU_NAME
                               environment variable.  [required]
  --tpu-topology TEXT          The topology of the TPU. Defaults to the
                               TPU_TOPOLOGY environment variable.  [required]
  --help                       Show this message and exit.

Tests and Code Quality

The code is formatted with black. You can run the formatter using the bin/format script:

$ ./bin/format

To run code quality checks, use the bin/verify script:

$ ./bin/verify

For fine-grained control of which tests to run, use pytest directly:

$ pytest

You can also skip slower tests by passing the --skip-slow (-s) flag:

$ pytest --skip-slow

Citation

Unicorn on Rainbow is a AAAI 2021 paper. Please check back here soon for the bibtex citation.

Contact

For public, non-sensitive questions and concerns, please file an issue on this repository.

For private or sensitive inquiries email mosaic on the allenai.org website.

Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Acoustic mosquito detection code with Bayesian Neural Networks

HumBugDB Acoustic mosquito detection with Bayesian Neural Networks. Extract audio or features from our large-scale dataset on Zenodo. This repository

31 Nov 28, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022