Neural models of common sense. 🤖

Related tags

Deep Learningrainbow
Overview

Unicorn on Rainbow

Neural models of common sense.

This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a New Multitask Benchmark. Unicorn on Rainbow introduces a new evaluation, the cost equivalent curve, which compares models in terms of their cost-benefit trade offs. Using cost equivalent curves, we conduct a large-scale empirical study of intermediate-task transfer for common sense on a new benchmark collection of commonsense reasoning datasets, Rainbow. With findings from this study, we create a new state-of-the-art model for commonsense reasoning: Unicorn.

Jump to a section of the readme to accomplish different goals:

  • Rainbow: Read about and download data for Rainbow, our new commonsense reasoning benchmark.
  • Unicorn: Get up and running with Unicorn, our state-of-the-art commonsense reasoning model.
  • Cost Equivalent Curves: Learn how to generate cost equivalent curves for your own predictions.
  • Experimental Results: Download and analyze the results from our hundreds of experiments.
  • Setup: Get set up to run the code in this repository.
  • Quickstart: Run the code in this repo.
  • Citation: Cite the Unicorn on Rainbow paper.
  • Contact: Reach out with questions or comments.

Note: This repository is intended for research. There is no intention for ongoing maintenance.

Rainbow

Rainbow brings together six pre-existing commonsense reasoning benchmarks: aNLI, Cosmos QA, HellaSWAG, Physical IQa, Social IQa, and WinoGrande. These commonsense reasoning benchmarks span both social and physical common sense.

Note: Rainbow pins these datasets to specific versions. To make sure you're using the correct data, please download those versions below.

Getting the Data

Rainbow preprocesses all of the datasets into a text-to-text format for ease of modeling.

Alternatively, you can download the individual tasks and preprocess them yourself.

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

Submitting to the Leaderboard

If you develop a model for Rainbow, please feel free to submit to the leaderboard!

Unicorn

Unicorn (a UNIversal COmmonsense Reasoning Model) solves commonsense reasoning tasks in the text-to-text format. In principle, Unicorn may be trained on any NLP task, simply feed it text input and ask it to predict text output. Unicorn derives from T5, supercharging it for commonsense reasoning tasks and achieving state-of-the-art across a number of popular benchmarks, including Rainbow and CommonsenseQA.

To try Unicorn on your own data, first download the weights then fine-tune and evaluate it on your own data.

Downloading the Weights

To run Unicorn, you'll first need to download its weight files into a directory or path on Google Cloud. Using gsutil:

gsutil cp -r \
  gs://ai2-mosaic-public/projects/rainbow/v1.0/unicorns/lr-2e-3_batch-size-32
  $DST

Where $DST is the destination directory.

Reproducing our Results

In Unicorn on Rainbow, we trained different Unicorns that were first multitasked on Rainbow using different hyper-parameters. The checkpoint we've made available had the best performance most often. If you need the other checkpoints, please email the authors.

Cost Equivalent Curves

Cost equivalent curves compare the cost-benefit trade offs different techniques offer. In particular, cost equivalent curves plot the baseline and new technique's equivalent costs, or the costs where they achieve the same performance. For example, if the cost is measured as the number of examples and performance is measured by accuracy, then the cost equivalent curve shows how many examples the baseline needs to match the new technique's accuracy.

The plot_cost_equivalent_curves function in bin/create-multi-experiment-figures.py offers example code for how to create cost equivalent curves in Python.

Stay Tuned! We'll soon be releasing an easy-to-use, standalone package for creating cost equivalent curves. Check back here for it in the future.

Experimental Results

For Unicorn on Rainbow, we ran hundreds of experiments. We've made available the results from all those experiments in order to facilitate future research. For example, you may want those thousands of training curves to study hyper-parameter tuning or how loss evolves over training.

Among other things, you'll find:

  • predictions on dev from every checkpoint saved during training
  • training curves (training step vs. loss)
  • learning curves (dataset size vs. accuracy)
  • hyper-parameter tuning
  • all tables and figures from the paper
  • and more...

Our hope is that researchers can reuse this large collection of experiments to derive new practical and research insights.

Downloading the Results

Five collections of results are available:

All checksums are sha256. To compute the checksum with openssl, run:

$ openssl sha256 $FILE_PATH

NOTE: The learning curves experiments varied the number of training examples up to 16,000; however, CommonsenseQA has fewer than 16,000 training examples. Thus, for CommonsenseQA numbers higher than 9,741 are truncated to that size. This subtlety is taken care of by the data processing pipeline when the experiments are processed into the results tables, so it only affects rainbow-predictions.tar.gz and rainbow-experiments.tar.gz.

Replicating Our Analysis Pipeline

All the scripts to replicate our analysis pipeline reside in bin/. In order to run the scripts, you'll need to get set up for development.

The overall pipeline is as follows:

+----------------------------+
| rainbow-predictions.tar.gz |
+----------------------------+
              |
              | (bin/organize-experiments)
              V
+----------------------------+
| rainbow-experiments.tar.gz |
+----------------------------+
              |
              | (bin/generate-tables.py)
              V
  +------------------------+
  | rainbow-results.tar.gz |
  +------------------------+
         |         |
         |         | (bin/generate-latex-tables.py)
         |         V
         |     +-----------------------------+
         |     | rainbow-latex-tables.tar.gz |
         |     +-----------------------------+
         |
         | (bin/create-single-experiment-figures.py)
         | (bin/create-multi-experiment-figures.py)
         V
+------------------------+
| rainbow-figures.tar.gz |
+------------------------+

To run the pipeline, start by downloading rainbow-predictions.tar.gz (see Downloading the Results above).

Use bin/organize-experiments to produce rainbow-experiments.tar.gz:

$ tar -xf rainbow-predictions.tar.gz
$ bin/organize-experiments rainbow-predictions $DST

Where $DST is the desired destination directory (for example the current directory, .).

Use bin/generate-tables.py to produce rainbow-results.tar.gz:

$ bin/generate-tables.py rainbow-experiments rainbow-results

Use bin/create-single-experiment-figures.py and bin/create-multi-experiment-figures.py to create rainbow-figures.tar.gz:

$ bin/create-single-experiment-figures.py rainbow-results rainbow-figures/single-experiment
$ bin/create-multi-experiment-figures.py rainbow-results rainbow-figures/multi-experiment

And use bin/generate-latex-tables.py to produce rainbow-latex-tables.tar.gz:

$ bin/generate-latex-tables.py rainbow-results rainbow-latex-tables

All scripts except bin/organize-experiments are also self-documenting, so pass --help to any of them for more information.

Setup

This project requires Python 3.6 or above.

First, install the project's dependencies:

./bin/install

Next, make sure you have the following environment variables set:

  1. RAINBOW_DATASETS_DIR: The directory for storing all relevant datasets.
  2. RAINBOW_PREPROCESSED_DATASETS_DIR: The directory for storing the preprocessed dataset split files.
  3. RAINBOW_TFDS_DATASETS_DIR: The directory for storing the TFDS (tensorflow datasets) datasets.

Training requires TPUs. For training, all directories should point to Google Cloud Storage prefixes. Additionally, you'll need the following environment variables:

  1. PROJECT: Your Google Cloud project's ID.
  2. ZONE: Your Google Cloud virtual machine's zone.
  3. TPU_NAME: Your TPU's name.
  4. TPU_TOPOLOGY: Your TPU's topology.

Then, download and prepare all the datasets for text-to-text modeling:

$ ./bin/prepare.py --help
Usage: prepare.py [OPTIONS]

  Prepare all relevant datasets for text-to-text modeling.

  Download to and read the datasets from --src, transform them into CSVs
  suitable for text-to-text models, then write the results to --dst. Google
  storage paths are supported.

Options:
  --src TEXT        The directory to which to download all the relevant
                    datasets. Defaults to the RAINBOW_DATASETS_DIR environment
                    variable.  [required]
  --dst TEXT        The directory to which to write the preprocessed dataset
                    files. Defaults to the RAINBOW_PREPROCESSED_DATASETS_DIR
                    environment variable.  [required]
  --force-download  Force downloads of all the datasets, otherwise only
                    missing datasets will be downloaded.
  --help            Show this message and exit.

Finally, verify your installation:

./bin/verify

Quickstart

Before following this section, make sure you've done the Setup.

Fine-tuning

To fine-tune the model, use bin/fine-tune.py:

$ ./bin/fine-tune.py --help
Usage: fine-tune.py [OPTIONS] MIXTURE RESULTS_DIR

  Fine-tune the model on MIXTURE, writing results to RESULTS_DIR.

Options:
  --pretrained-model TEXT         The path to or name of the pretrained model.
                                  Defaults to 3B.
  --n-steps INTEGER               The number of gradient updates. Defaults to
                                  25,000.
  --learning-rate FLOAT           The learning rate to use for training.
                                  Defaults to 3e-3.
  --batch-size INTEGER            The batch size to use for training. For
                                  efficient training on the TPU, choose a
                                  multiple of either 8 or 128. Defaults to 16.
  --model-parallelism INTEGER     The degree of model parallelism to use.
                                  Defaults to 8.
  --save-checkpoints-steps INTEGER
                                  The number of steps to take before saving a
                                  checkpoint. Defaults to 5000.
  --n-checkpoints-to-keep INTEGER
                                  The number of checkpoints to keep during
                                  fine-tuning. Defaults to 4.
  --tpu-name TEXT                 The name of the TPU. Defaults to the
                                  TPU_NAME environment variable.  [required]
  --tpu-topology TEXT             The topology of the TPU. Defaults to the
                                  TPU_TOPOLOGY environment variable.
                                  [required]
  --help                          Show this message and exit.

Evaluation

To evaluate the model, use bin/evaluate.py:

$ ./bin/evaluate.py --help
Usage: evaluate.py [OPTIONS] MIXTURE RESULTS_DIR

  Evaluate the model located at RESULTS_DIR on MIXTURE.

Options:
  --batch-size INTEGER         The batch size to use for prediction. For
                               efficient prediction on the TPU, choose a
                               multiple of either 8 or 128. Defaults to 64.
  --model-parallelism INTEGER  The degree of model parallelism to use.
                               Defaults to 8.
  --tpu-name TEXT              The name of the TPU. Defaults to the TPU_NAME
                               environment variable.  [required]
  --tpu-topology TEXT          The topology of the TPU. Defaults to the
                               TPU_TOPOLOGY environment variable.  [required]
  --help                       Show this message and exit.

Tests and Code Quality

The code is formatted with black. You can run the formatter using the bin/format script:

$ ./bin/format

To run code quality checks, use the bin/verify script:

$ ./bin/verify

For fine-grained control of which tests to run, use pytest directly:

$ pytest

You can also skip slower tests by passing the --skip-slow (-s) flag:

$ pytest --skip-slow

Citation

Unicorn on Rainbow is a AAAI 2021 paper. Please check back here soon for the bibtex citation.

Contact

For public, non-sensitive questions and concerns, please file an issue on this repository.

For private or sensitive inquiries email mosaic on the allenai.org website.

PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
NeRViS: Neural Re-rendering for Full-frame Video Stabilization

Neural Re-rendering for Full-frame Video Stabilization

Yu-Lun Liu 9 Jun 17, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Blender Add-On for slicing meshes with planes

MeshSlicer Blender Add-On for slicing meshes with multiple overlapping planes at once. This is a simple Blender addon to slice a silmple mesh with mul

52 Dec 12, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023