Deep learning toolbox based on PyTorch for hyperspectral data classification.

Overview

DeepHyperX

A Python tool to perform deep learning experiments on various hyperspectral datasets.

https://www.onera.fr/en/research/information-processing-and-systems-domain

https://www-obelix.irisa.fr/

Reference

This toolbox was used for our review paper in Geoscience and Remote Sensing Magazine :

N. Audebert, B. Le Saux and S. Lefevre, "Deep Learning for Classification of Hyperspectral Data: A Comparative Review," in IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 2, pp. 159-173, June 2019.

Bibtex format :

@article{8738045, author={N. {Audebert} and B. {Le Saux} and S. {Lefèvre}}, journal={IEEE Geoscience and Remote Sensing Magazine}, title={Deep Learning for Classification of Hyperspectral Data: A Comparative Review}, year={2019}, volume={7}, number={2}, pages={159-173}, doi={10.1109/MGRS.2019.2912563}, ISSN={2373-7468}, month={June},}

Requirements

This tool is compatible with Python 2.7 and Python 3.5+.

It is based on the PyTorch deep learning and GPU computing framework and use the Visdom visualization server.

Setup

The easiest way to install this code is to create a Python virtual environment and to install dependencies using: pip install -r requirements.txt

(on Windows you should use pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html)

Docker

Alternatively, it is possible to run the Docker image.

Grab the image using:

docker pull registry.gitlab.inria.fr/naudeber/deephyperx:preview

And then run the image using:

docker run -p 9999:8097 -ti --rm -v `pwd`:/workspace/DeepHyperX/ registry.gitlab.inria.fr/naudeber/deephyperx:preview

This command:

  • starts a Docker container using the image registry.gitlab.inria.fr/naudeber/deephyperx:preview
  • starts an interactive shell session -ti
  • mounts the current folder in the /workspace/DeepHyperX/ path of the container
  • binds the local port 9999 to the container port 8097 (for Visdom)
  • removes the container --rm when the user has finished.

All data and products are stored in the current folder.

Users can build the Docker image locally using the Dockerfile using the command docker build ..

Hyperspectral datasets

Several public hyperspectral datasets are available on the UPV/EHU wiki. Users can download those beforehand or let the tool download them. The default dataset folder is ./Datasets/, although this can be modified at runtime using the --folder arg.

At this time, the tool automatically downloads the following public datasets:

  • Pavia University
  • Pavia Center
  • Kennedy Space Center
  • Indian Pines
  • Botswana

The Data Fusion Contest 2018 hyperspectral dataset is also preconfigured, although users need to download it on the DASE website and store it in the dataset folder under DFC2018_HSI.

An example dataset folder has the following structure:

Datasets
├── Botswana
│   ├── Botswana_gt.mat
│   └── Botswana.mat
├── DFC2018_HSI
│   ├── 2018_IEEE_GRSS_DFC_GT_TR.tif
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR.aux.xml
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR.HDR
├── IndianPines
│   ├── Indian_pines_corrected.mat
│   ├── Indian_pines_gt.mat
├── KSC
│   ├── KSC_gt.mat
│   └── KSC.mat
├── PaviaC
│   ├── Pavia_gt.mat
│   └── Pavia.mat
└── PaviaU
    ├── PaviaU_gt.mat
    └── PaviaU.mat

Adding a new dataset

Adding a custom dataset can be done by modifying the custom_datasets.py file. Developers should add a new entry to the CUSTOM_DATASETS_CONFIG variable and define a specific data loader for their use case.

Models

Currently, this tool implements several SVM variants from the scikit-learn library and many state-of-the-art deep networks implemented in PyTorch.

Adding a new model

Adding a custom deep network can be done by modifying the models.py file. This implies creating a new class for the custom deep network and altering the get_model function.

Usage

Start a Visdom server: python -m visdom.server and go to http://localhost:8097 to see the visualizations (or http://localhost:9999 if you use Docker).

Then, run the script main.py.

The most useful arguments are:

  • --model to specify the model (e.g. 'svm', 'nn', 'hamida', 'lee', 'chen', 'li'),
  • --dataset to specify which dataset to use (e.g. 'PaviaC', 'PaviaU', 'IndianPines', 'KSC', 'Botswana'),
  • the --cuda switch to run the neural nets on GPU. The tool fallbacks on CPU if this switch is not specified.

There are more parameters that can be used to control more finely the behaviour of the tool. See python main.py -h for more information.

Examples:

  • python main.py --model SVM --dataset IndianPines --training_sample 0.3 This runs a grid search on SVM on the Indian Pines dataset, using 30% of the samples for training and the rest for testing. Results are displayed in the visdom panel.
  • python main.py --model nn --dataset PaviaU --training_sample 0.1 --cuda This runs on GPU a basic 4-layers fully connected neural network on the Pavia University dataset, using 10% of the samples for training.
  • python main.py --model hamida --dataset PaviaU --training_sample 0.5 --patch_size 7 --epoch 50 --cuda This runs on GPU the 3D CNN from Hamida et al. on the Pavia University dataset with a patch size of 7, using 50% of the samples for training and optimizing for 50 epochs.

Say Thanks!

Owner
Nicolas
Assistant professor in Computer Science. Resarcher on computer vision and deep learning.
Nicolas
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese 简体中文版 or in Korean 한국어 or in Japanese 日本語. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-train

GMUM 90 Jan 08, 2023
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Adversarial Differentiable Data Augmentation This repository provides the official PyTorch implementation of the ICRA 2021 paper: Adversarial Differen

Manli 3 Oct 15, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022