Deep learning toolbox based on PyTorch for hyperspectral data classification.

Overview

DeepHyperX

A Python tool to perform deep learning experiments on various hyperspectral datasets.

https://www.onera.fr/en/research/information-processing-and-systems-domain

https://www-obelix.irisa.fr/

Reference

This toolbox was used for our review paper in Geoscience and Remote Sensing Magazine :

N. Audebert, B. Le Saux and S. Lefevre, "Deep Learning for Classification of Hyperspectral Data: A Comparative Review," in IEEE Geoscience and Remote Sensing Magazine, vol. 7, no. 2, pp. 159-173, June 2019.

Bibtex format :

@article{8738045, author={N. {Audebert} and B. {Le Saux} and S. {Lefèvre}}, journal={IEEE Geoscience and Remote Sensing Magazine}, title={Deep Learning for Classification of Hyperspectral Data: A Comparative Review}, year={2019}, volume={7}, number={2}, pages={159-173}, doi={10.1109/MGRS.2019.2912563}, ISSN={2373-7468}, month={June},}

Requirements

This tool is compatible with Python 2.7 and Python 3.5+.

It is based on the PyTorch deep learning and GPU computing framework and use the Visdom visualization server.

Setup

The easiest way to install this code is to create a Python virtual environment and to install dependencies using: pip install -r requirements.txt

(on Windows you should use pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html)

Docker

Alternatively, it is possible to run the Docker image.

Grab the image using:

docker pull registry.gitlab.inria.fr/naudeber/deephyperx:preview

And then run the image using:

docker run -p 9999:8097 -ti --rm -v `pwd`:/workspace/DeepHyperX/ registry.gitlab.inria.fr/naudeber/deephyperx:preview

This command:

  • starts a Docker container using the image registry.gitlab.inria.fr/naudeber/deephyperx:preview
  • starts an interactive shell session -ti
  • mounts the current folder in the /workspace/DeepHyperX/ path of the container
  • binds the local port 9999 to the container port 8097 (for Visdom)
  • removes the container --rm when the user has finished.

All data and products are stored in the current folder.

Users can build the Docker image locally using the Dockerfile using the command docker build ..

Hyperspectral datasets

Several public hyperspectral datasets are available on the UPV/EHU wiki. Users can download those beforehand or let the tool download them. The default dataset folder is ./Datasets/, although this can be modified at runtime using the --folder arg.

At this time, the tool automatically downloads the following public datasets:

  • Pavia University
  • Pavia Center
  • Kennedy Space Center
  • Indian Pines
  • Botswana

The Data Fusion Contest 2018 hyperspectral dataset is also preconfigured, although users need to download it on the DASE website and store it in the dataset folder under DFC2018_HSI.

An example dataset folder has the following structure:

Datasets
├── Botswana
│   ├── Botswana_gt.mat
│   └── Botswana.mat
├── DFC2018_HSI
│   ├── 2018_IEEE_GRSS_DFC_GT_TR.tif
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR.aux.xml
│   ├── 2018_IEEE_GRSS_DFC_HSI_TR.HDR
├── IndianPines
│   ├── Indian_pines_corrected.mat
│   ├── Indian_pines_gt.mat
├── KSC
│   ├── KSC_gt.mat
│   └── KSC.mat
├── PaviaC
│   ├── Pavia_gt.mat
│   └── Pavia.mat
└── PaviaU
    ├── PaviaU_gt.mat
    └── PaviaU.mat

Adding a new dataset

Adding a custom dataset can be done by modifying the custom_datasets.py file. Developers should add a new entry to the CUSTOM_DATASETS_CONFIG variable and define a specific data loader for their use case.

Models

Currently, this tool implements several SVM variants from the scikit-learn library and many state-of-the-art deep networks implemented in PyTorch.

Adding a new model

Adding a custom deep network can be done by modifying the models.py file. This implies creating a new class for the custom deep network and altering the get_model function.

Usage

Start a Visdom server: python -m visdom.server and go to http://localhost:8097 to see the visualizations (or http://localhost:9999 if you use Docker).

Then, run the script main.py.

The most useful arguments are:

  • --model to specify the model (e.g. 'svm', 'nn', 'hamida', 'lee', 'chen', 'li'),
  • --dataset to specify which dataset to use (e.g. 'PaviaC', 'PaviaU', 'IndianPines', 'KSC', 'Botswana'),
  • the --cuda switch to run the neural nets on GPU. The tool fallbacks on CPU if this switch is not specified.

There are more parameters that can be used to control more finely the behaviour of the tool. See python main.py -h for more information.

Examples:

  • python main.py --model SVM --dataset IndianPines --training_sample 0.3 This runs a grid search on SVM on the Indian Pines dataset, using 30% of the samples for training and the rest for testing. Results are displayed in the visdom panel.
  • python main.py --model nn --dataset PaviaU --training_sample 0.1 --cuda This runs on GPU a basic 4-layers fully connected neural network on the Pavia University dataset, using 10% of the samples for training.
  • python main.py --model hamida --dataset PaviaU --training_sample 0.5 --patch_size 7 --epoch 50 --cuda This runs on GPU the 3D CNN from Hamida et al. on the Pavia University dataset with a patch size of 7, using 50% of the samples for training and optimizing for 50 epochs.

Say Thanks!

Owner
Nicolas
Assistant professor in Computer Science. Resarcher on computer vision and deep learning.
Nicolas
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Implements Stacked-RNN in numpy and torch with manual forward and backward functions

Recurrent Neural Networks Implements simple recurrent network and a stacked recurrent network in numpy and torch respectively. Both flavours implement

Vishal R 1 Nov 16, 2021
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Robotics and Perception Group 104 Nov 16, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022