[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

Overview

MedMNIST

Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21)

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni

We introduce MedMNIST v2, a large-scale MNIST-like collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into 28x28 (2D) or 28x28x28 (3D) with the corresponding classification labels, so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various data scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression and multi-label). The resulting dataset, consisting of 708,069 2D images and 10,214 3D images in total, could support numerous research / educational purposes in biomedical image analysis, computer vision and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D / 3D neural networks and open-source / commercial AutoML tools.

MedMNISTv2_overview

For more details, please refer to our paper:

MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification (arXiv)

Key Features

  • Diverse: It covers diverse data modalities, dataset scales (from 100 to 100,000), and tasks (binary/multi-class, multi-label, and ordinal regression). It is as diverse as the VDD and MSD to fairly evaluate the generalizable performance of machine learning algorithms in different settings, but both 2D and 3D biomedical images are provided.
  • Standardized: Each sub-dataset is pre-processed into the same format, which requires no background knowledge for users. As an MNIST-like dataset collection to perform classification tasks on small images, it primarily focuses on the machine learning part rather than the end-to-end system. Furthermore, we provide standard train-validation-test splits for all datasets in MedMNIST v2, therefore algorithms could be easily compared.
  • Lightweight: The small size of 28×28 (2D) or 28×28×28 (3D) is friendly to evaluate machine learning algorithms.
  • Educational: As an interdisciplinary research area, biomedical image analysis is difficult to hand on for researchers from other communities, as it requires background knowledge from computer vision, machine learning, biomedical imaging, and clinical science. Our data with Creative Commons (CC) Licenses is easy to use for educational purposes.

Please note that this dataset is NOT intended for clinical use.

Code Structure

  • medmnist/:
    • dataset.py: PyTorch datasets and dataloaders of MedMNIST.
    • evaluator.py: Standardized evaluation functions.
    • info.py: Dataset information dict for each subset of MedMNIST.
  • examples/:
    • getting_started.ipynb: To explore the MedMNIST dataset with jupyter notebook. It is ONLY intended for a quick exploration, i.e., it does not provide full training and evaluation functionalities.
    • getting_started_without_PyTorch.ipynb: This notebook provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • setup.py: To install medmnist as a module.
  • [EXTERNAL] MedMNIST/experiments: training and evaluation scripts to reproduce both 2D and 3D experiments in our paper, including PyTorch, auto-sklearn, AutoKeras and Google AutoML Vision together with their weights ;)

Installation and Requirements

Setup the required environments and install medmnist as a standard Python package:

pip install --upgrade git+https://github.com/MedMNIST/MedMNIST.git

Check whether you have installed the latest version:

>>> import medmnist
>>> print(medmnist.__version__)

The code requires only common Python environments for machine learning. Basically, it was tested with

  • Python 3 (Anaconda 3.6.3 specifically)
  • PyTorch==1.3.1
  • numpy==1.18.5, pandas==0.25.3, scikit-learn==0.22.2, Pillow==8.0.1, fire

Higher (or lower) versions should also work (perhaps with minor modifications).

If you use PyTorch

  • Great! Our code is designed to work with PyTorch.

  • Explore the MedMNIST dataset with jupyter notebook (getting_started.ipynb), and train basic neural networks in PyTorch.

If you do not use PyTorch

  • Although our code is tested with PyTorch, you are free to parse them with your own code (without PyTorch or even without Python!), as they are only standard NumPy serialization files. It is simple to create a dataset without PyTorch.
  • Go to getting_started_without_PyTorch.ipynb, which provides snippets about how to use MedMNIST data (the .npz files) without PyTorch.
  • Simply change the super class of MedMNIST from torch.utils.data.Dataset to collections.Sequence, you will get a standard dataset without PyTorch. Check dataset_without_pytorch.py for more details.
  • You still have most functionality of our MedMNIST code ;)

Dataset

Please download the dataset(s) via Zenodo. You could also use our code to download automatically by setting download=True in dataset.py.

The MedMNIST dataset contains several subsets. Each subset (e.g., pathmnist.npz) is comprised of 6 keys: train_images, train_labels, val_images, val_labels, test_images and test_labels.

  • train_images / val_images / test_images: N × 28 × 28 for 2D gray-scale datasets, N × 28 × 28 × 3 for 2D RGB datasets, N × 28 × 28 × 28 for 3D datasets. N denotes the number of samples.
  • train_labels / val_labels / test_labels: N x L. N denotes the number of samples. L denotes the number of task labels; for single-label (binary/multi-class) classification, L=1, and {0,1,2,3,..,C} denotes the category labels (C=1 for binary); for multi-label classification L!=1, e.g., L=14 for chestmnist.npz.

Command Line Tools

  • List all available datasets:

      python -m medmnist available
    
  • Download all available datasets:

      python -m medmnist download
    
  • Delete all downloaded npz from root:

      python -m medmnist clean
    
  • Print the dataset details given a subset flag:

      python -m medmnist info --flag=xxxmnist
    
  • Save the dataset as standard figure and csv files, which could be used for AutoML tools, e.g., Google AutoML Vision:

      python -m medmnist save --flag=xxxmnist --folder=tmp/
    
  • Parse and evaluate a standard result file, refer to Evaluator.parse_and_evaluate for details.

      python -m medmnist evaluate --path=folder/{flag}_{split}@{run}.csv
    

Citation

If you find this project useful, please cite both v1 and v2 paper as:

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter Pfister, Bingbing Ni. "MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification". arXiv preprint arXiv:2110.14795, 2021.

Jiancheng Yang, Rui Shi, Bingbing Ni. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis". IEEE 18th International Symposium on Biomedical Imaging (ISBI), 2021.

or using the bibtex:

@article{medmnistv2,
    title={MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification},
    author={Yang, Jiancheng and Shi, Rui and Wei, Donglai and Liu, Zequan and Zhao, Lin and Ke, Bilian and Pfister, Hanspeter and Ni, Bingbing},
    journal={arXiv preprint arXiv:2110.14795},
    year={2021}
}
 
@inproceedings{medmnistv1,
    title={MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis},
    author={Yang, Jiancheng and Shi, Rui and Ni, Bingbing},
    booktitle={IEEE 18th International Symposium on Biomedical Imaging (ISBI)},
    pages={191--195},
    year={2021}
}

Please also cite the corresponding paper of source data if you use any subset of MedMNIST as per the project page.

LICENSE

The code is under Apache-2.0 License.

The datasets are under Creative Commons (CC) Licenses in general. Each subset keeps the same license as that of the source dataset.

A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023