Malware Env for OpenAI Gym

Overview

Malware Env for OpenAI Gym


Citing

If you use this code in a publication please cite the following paper:


Hyrum S. Anderson, Anant Kharkar, Bobby Filar, David Evans, Phil Roth, "Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning", in ArXiv e-prints. Jan. 2018.

@ARTICLE{anderson2018learning,
  author={Anderson, Hyrum S and Kharkar, Anant and Filar, Bobby and Evans, David and Roth, Phil},
  title={Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning},
  journal={arXiv preprint arXiv:1801.08917},
  archivePrefix = "arXiv",
  eprint = {1801.08917},
  primaryClass = "cs.CR",
  keywords = {Computer Science - Cryptography and Security},
  year = 2018,
  month = jan,
  adsurl = {http://adsabs.harvard.edu/abs/2018arXiv180108917A},
}

This is a malware manipulation environment for OpenAI's gym. OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. This makes it possible to write agents that learn to manipulate PE files (e.g., malware) to achieve some objective (e.g., bypass AV) based on a reward provided by taking specific manipulation actions.

Objective

Create an AI that learns through reinforcement learning which functionality-preserving transformations to make on a malware sample to break through / bypass machine learning static-analysis malware detection.

Breakout

Basics

There are two basic concepts in reinforcement learning: the environment (in our case, the malware sample) and the agent (namely, the algorithm used to change the environment). The agent sends actions to the environment, and the environment replies with observations and rewards (that is, a score).

This repo provides an environment for manipulating PE files and providing rewards that are based around bypassing AV. An agent can be deployed that have already been written for the rich gym framework. For example

Setup

The EvadeRL framework is built on Python3.6 we recommend first creating a virtualenv (details can be found here) with Python3.6 then performing the following actions ensure you have the correct python libraries:

pip install -r requirements.txt

EvadeRL also leverages a Library to Instrument Executable Formats aptly named LIEF. It allows our agent to modify the binary on-the-fly. To add it to your virtualenv just pip install one of their pre-built packages. Examples below:

Linux

pip install https://github.com/lief-project/LIEF/releases/download/0.7.0/linux_lief-0.7.0_py3.6.tar.gz

OSX

pip install https://github.com/lief-project/LIEF/releases/download/0.7.0/osx_lief-0.7.0_py3.6.tar.gz

Once completed ensure you've moved malware samples into the

gym_malware/gym_malware/envs/utils/samples/

If you are unsure where to acquire malware samples see the Data Acquisition section below. If you have samples in the correct directory you can check to see if your environment is correctly setup by running :

python test_agent_chainer.py

Note that if you are using Anaconda, you may need to

conda install libgcc

in order for LIEF to operate properly.

Data Acquisition

If you have a VirusTotal API key, you may download samples to the gym_malware/gym_malware/envs/utils/samples/ using the Python script download_samples.py.

Gym-Malware Environment

EvadeRL pits a reinforcement agent against the malware environment consisting of the following components:

  • Action Space
  • Independent Malware Classifier
  • OpenAI framework malware environment (aka gym-malware)

Action Space

The moves or actions that can be performed on a malware sample in our environment consist of the following binary manipulations:

  • append_zero
  • append_random_ascii
  • append_random_bytes
  • remove_signature
  • upx_pack
  • upx_unpack
  • change_section_names_from_list
  • change_section_names_to random
  • modify_export
  • remove_debug
  • break_optional_header_checksum

The agent will randomly select these actions in an attempt to bypass the classifier (info on default classifier below). Over time, the agent learns which combinations lead to the highest rewards, or learns a policy (like an optimal plan of attack for any given observation).

Independent Classifier

Included as a default model is a gradient boosted decision trees model trained on 50k malicious and 50k benign samples with the following features extracted:

  • Byte-level data (e.g. histogram and entropy)
  • Header
  • Section
  • Import/Exports
Owner
ENDGAME
ENDGAME
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
TCube generates rich and fluent narratives that describes the characteristics, trends, and anomalies of any time-series data (domain-agnostic) using the transfer learning capabilities of PLMs.

TCube: Domain-Agnostic Neural Time series Narration This repository contains the code for the paper: "TCube: Domain-Agnostic Neural Time series Narrat

Mandar Sharma 7 Oct 31, 2021
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
EGNN - Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch

EGNN - Pytorch Implementation of E(n)-Equivariant Graph Neural Networks, in Pytorch. May be eventually used for Alphafold2 replication. This

Phil Wang 259 Jan 04, 2023
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023