Direct design of biquad filter cascades with deep learning by sampling random polynomials.

Related tags

Deep LearningIIRNet
Overview

IIRNet

Direct design of biquad filter cascades with deep learning by sampling random polynomials.

License Open In Colab arXiv

Usage

git clone https://github.com/csteinmetz1/IIRNet.git
pip install .

Filter design

Start designing filters with just a few lines of code. In this example (demos/basic.py ) we create a 32nd order IIR filter to match an arbitrary response that we define over a few points. Internally, this specification will be interpolated to 512 points.

import torch
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
from iirnet.designer import Designer

# first load IIRNet with pre-trained weights
designer = Designer()

n = 32  # Desired filter order (4, 8, 16, 32, 64)
m = [0, -3, 0, 12, 0, -6, 0]  # Magnitude response specification
mode = "linear"  # interpolation mode for specification
output = "sos"  # Output type ("sos", or "ba")

# now call the designer with parameters
sos = designer(n, m, mode=mode, output=output)

# measure and plot the response
w, h = scipy.signal.sosfreqz(sos.numpy(), fs=2)

# interpolate the target for plotting
m_int = torch.tensor(m).view(1, 1, -1).float()
m_int = torch.nn.functional.interpolate(m_int, 512, mode=mode)

fig, ax = plt.subplots(figsize=(6, 3))
plt.plot(w, 20 * np.log10(np.abs(h)), label="Estimation")
plt.plot(w, m_int.view(-1), label="Specification")
# .... more plotting ....

See demos/basic.py for the full script.

Training

We provide a set of shell scripts that will launch training jobs that reproduce the experiments from the paper in configs/. These should be launched from the top level after installing.

./configs/train_hidden_dim.sh
./configs/filter_method.sh
./configs/filter_order.sh

Evaluation

Running the evaluation will require both the pre-trained models (or models you trained yourself) along with the HRTF and Guitar cabinet datasets. These datasets can be downloaded as follows:

First, change to the data directory and then run the download script.

cd data
./dl.sh

Note, you may need to install 7z if you don't already have it. brew install p7zip on macOS

Next download the pre-trained checkpoints if you haven't already.

mkdir logs
cd logs 
wget https://zenodo.org/record/5550275/files/filter_method.zip
wget https://zenodo.org/record/5550275/files/filter_order.zip
wget https://zenodo.org/record/5550275/files/hidden_dim.zip

unzip filter_method.zip
unzip filter_order.zip
unzip hidden_dim.zip

rm filter_method.zip
rm filter_order.zip
rm hidden_dim.zip

Now you can run the evaluation on checkpoints from the three different experiments as follows.

python eval.py logs/filter_method --yw --sgd --guitar_cab --hrtf --filter_order 16
python eval.py logs/hidden_dim --yw --sgd --guitar_cab --hrtf --filter_order 16

For the filter order experiment we need to run the eval script across all models for every order.

python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 4
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 8
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 16
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 32
python eval.py logs/filter_order --guitar_cab --hrtf --filter_order 64

Note: Requires PyTorch >=1.8

Filter methods

ID Sampling method Name
(A) Normal coefficients normal_poly
(B) Normal biquads normal_biquad
(C) Uniform disk uniform_disk
(D) Uniform magnitude disk uniform_mag_disk
(E) Characteristic char_poly
(F) Uniform parametric uniform_parametric

Citation

 @article{colonel2021iirnet,
    title={Direct design of biquad filter cascades with deep learning by sampling random polynomials},
    author={Colonel, Joseph and Steinmetz, Christian J. and Michelen, Marcus and Reiss, Joshua D.},
    booktitle={arXiv:2110.03691},
    year={2021}}
Owner
Christian J. Steinmetz
Building tools for musicians and audio engineers (often with machine learning). PhD Student at Queen Mary University of London.
Christian J. Steinmetz
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Fast, flexible and fun neural networks.

Brainstorm Discontinuation Notice Brainstorm is no longer being maintained, so we recommend using one of the many other,available frameworks, such as

IDSIA 1.3k Nov 21, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023