Toolbox to analyze temporal context invariance of deep neural networks

Overview

PyTCI

A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI).

The TCI method

Integration windows are defined as the time window within which stimuli alter a sensory response and outside of which stimuli have little effect. Integration windows provide a simple and general way to define the analysis timescale of a response. We estimate integration windows by presenting segments of natural stimuli in two different pseudorandom orders, such that the same segment occurs in two different contexts (is surrounded by different segments). We then estimate the smallest segment duration outside of which stimuli have little effect on the response. The TCI paradigm was initially developed to estimate integration windows for biological neural systems:

  1. Multiscale integration organizes hierarchical computation in human auditory cortex

The method however can be applied to any sensory response, and we have recently used the method to understand how deep speech recognition systems learn to flexibly integrate across multiple timescales:

  1. Understanding Adaptive, Multiscale Temporal Integration In Deep Speech Recognition Systems

This toolbox implements the analyses described in the above NeurIPS paper. We estimate context invariance using the "cross-context correlation" and then estimate the integration window by finding the smallest segment duration needed to achieve a given correlation threshold. Note that this approach is not robust to data noise and thus is not appropriate for biological neural systems (we will be releasing a different toolbox soon that addresses this limitation).

Usage

To demonstrate the application of the toolbox, two Jupyter notebooks have been provided in the "Examples" directory:

  1. Example-Toy: Shows how to apply the TCI method to a toy model that integrates sound energy within a gamma-distributed window. Covers most of the functionality of the toolbox.

  2. Example-DeepSpeech: Shows how to use the TCI method to estimate integration windows from the DeepSpeech2 model described in the paper, implemented in PyTorch. This notebook requires the pretrained model and speech audio clips in Examples/resources.tar to be extracted and placed in a directory named Examples/resources. It also has extra dependencies that need to be installed.

NOTE: These notebooks might not render as intended on GitHub. For correct rendering, open them locally in a Jupyter notebook or using nbviewer.

Installation

To install or update this package through pip, run the following command:

pip install git+https://github.com/naplab/PyTCI.git

You might also like...
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Complex-Valued Neural Networks (CVNN)Complex-Valued Neural Networks (CVNN)

Complex-Valued Neural Networks (CVNN) Done by @NEGU93 - J. Agustin Barrachina Using this library, the only difference with a Tensorflow code is that y

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

Releases(v0.2)
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks

pix2vox [Demonstration video] Sketch-Based 3D Exploration with Stacked Generative Adversarial Networks. Generated samples Single-category generation M

Takumi Moriya 232 Nov 14, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Subpopulation detection in high-dimensional single-cell data

PhenoGraph for Python3 PhenoGraph is a clustering method designed for high-dimensional single-cell data. It works by creating a graph ("network") repr

Dana Pe'er Lab 42 Sep 05, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023