AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

Overview

AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

AlgoVision

This repository includes the official implementation of our NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations" (Paper @ ArXiv, Video @ Youtube).

algovision is a Python 3.6+ and PyTorch 1.9.0+ based library for making algorithms differentiable. It can be installed via:

pip install algovision

Applications include smoothly integrating algorithms into neural networks for algorithmic supervision, problem-specific optimization within an algorithm, and whatever your imagination allows. As algovision relies on PyTorch it also supports CUDA, etc.

Check out the Documentation!

🌱 Intro

Deriving a loss from a smooth algorithm can be as easy as

from examples import get_bubble_sort
import torch

# Get an array (the first dimension is the batch dimension, which is always required)
array = torch.randn(1, 8, requires_grad=True)

bubble_sort = get_bubble_sort(beta=5)
result, loss = bubble_sort(array)

loss.backward()
print(array)
print(result)
print(array.grad)

Here, the loss is a sorting loss corresponding to the number of swaps in the bubble sort algorithm. But we can also define this algorithm from scratch:

from algovision import (
    Algorithm, Input, Output, Var, VarInt,                                          # core
    Let, LetInt, Print,                                                     # instructions
    Eq, NEq, LT, LEq, GT, GEq, CatProbEq, CosineSimilarity, IsTrue, IsFalse,  # conditions
    If, While, For,                                                   # control_structures
    Min, ArgMin, Max, ArgMax,                                                  # functions
)
import torch

bubble_sort = Algorithm(
    # Define the variables the input corresponds to
    Input('array'),
    # Declare and initialize all differentiable variables 
    Var('a',        torch.tensor(0.)),
    Var('b',        torch.tensor(0.)),
    Var('swapped',  torch.tensor(1.)),
    Var('loss',     torch.tensor(0.)),
    # Declare and initialize a hard integer variable (VarInt) for the control flow.
    # It can be defined in terms of a lambda expression. The required variables
    # are automatically inferred from the signature of the lambda expression.
    VarInt('n', lambda array: array.shape[1] - 1),
    # Start a relaxed While loop:
    While(IsTrue('swapped'),
        # Set `swapped` to 0 / False
        Let('swapped', 0),
        # Start an unrolled For loop. Corresponds to `for i in range(n):`
        For('i', 'n',
            # Set `a` to the `i`th element of `array`
            Let('a', 'array', ['i']),
            # Using an inplace lambda expression, we can include computations 
            # based on variables to obtain the element at position i+1. 
            Let('b', 'array', [lambda i: i+1]),
            # An If-Else statement with the condition a > b
            If(GT('a', 'b'),
               if_true=[
                   # Set the i+1 th element of array to a
                   Let('array', [lambda i: i + 1], 'a'),
                   # Set the i th element of array to b
                   Let('array', ['i'], 'b'),
                   # Set swapped to 1 / True
                   Let('swapped', 1.),
                   # Increment the loss by 1 using a lambda expression
                   Let('loss', lambda loss: loss + 1.),
               ]
           ),
        ),
        # Decrement the hard integer variable n by 1
        LetInt('n', lambda n: n-1),
    ),
    # Define what the algorithm should return
    Output('array'),
    Output('loss'),
    # Set the inverse temperature beta
    beta=5,
)

👾 Full Instruction Set

(click to expand)

The full set of modules is:

from algovision import (
    Algorithm, Input, Output, Var, VarInt,                                          # core
    Let, LetInt, Print,                                                     # instructions
    Eq, NEq, LT, LEq, GT, GEq, CatProbEq, CosineSimilarity, IsTrue, IsFalse,  # conditions
    If, While, For,                                                   # control_structures
    Min, ArgMin, Max, ArgMax,                                                  # functions
)

Algorithm is the main class, Input and Output define arguments and return values, Var defines differentiable variables and VarInt defines non-differentiable integer variables. Eq, LT, etc. are relaxed conditions for If and While, which are respective control structures. For bounded loops of fixed length that are unrolled. Let sets a differentiable variable, LetInt sets a hard integer variable. Note that hard integer variables should only be used if they are independent of the input values, but they may depend on the input shape (e.g., for reducing the number of iterations after each traversal of a For loop). Print prints for debug purposes. Min, ArgMin, Max, and ArgMax return the element-wise min/max/argmin/argmax of a list of tensors (of equal shape).

λ Lambda Expressions

Key to defining an algorithm are lambda expressions (see here for a reference). They allow defining anonymous functions and therefore allow expressing computations in-place. In most cases in algovision, it is possible to write a value in terms of a lambda expressions. The name of the used variable will be inferred from the signature of the expression. For example, lambda x: x**2 will take the variable named x and return the square of it at the location where the expression is written.

Let('z', lambda x, y: x**2 + y) corresponds to the regular line of code z = x**2 + y. This also allows inserting complex external functions including neural networks as part of the lambda expression. Assuming net is a neural networks, one can write Let('y', lambda x: net(x)) (corresponding to y = net(x)).

Let

Let is a very flexible instruction. The following table shows the use cases of it.

AlgoVision Python Description
Let('a', 'x') a = x Variable a is set to the value of variable x.
Let('a', lambda x: x**2) a = x**2 As soon as we compute anything on the right hand side of the equation, we need to write it as a lambda expression.
Let('a', 'array', ['i']) a = array[i] Indexing on the right hand requires an additional list parameter after the second argument.
Let('a', lambda array, i: array[:, i]) a = array[i] Equivalent to the row above: indexing can also be manually done inside of a lambda expression. Note that in this case, the batch dimension has to be written explicitly.
Let('a', 'array', ['i', lambda j: j+1]) a = array[i, j+1] Multiple indices and lambda expressions are also supported.
Let('a', 'array', [None, slice(0, None, 2)]) a = array[:, 0::2] None and slices are also supported.
Let('a', ['i'], 'x') a[i] = x Indexing can also be done on the left hand side of the equation.
Let('a', ['i'], 'x', ['j']) a[i] = x['j'] ...or on both sides.
Let(['a', 'b'], lamba x, y: (x+y, x-y)) a, b = x+y, x-y Multiple return values are supported.

In its most simple form Let obtains two arguments, a string naming the variable where the result is written, and the value that may be expressed via a lambda expression.

If the lambda expression returns multiple values, e.g., because a complex function is called and has two return values, the left argument can be a list of strings. That is, Let(['a', 'b'], lamba x, y: (x+y, x-y)) corresponds to a, b = x+y, x-y.

Let also supports indexing. This is denoted by an additional list argument after the left and/or the right argument. For example, Let('a', 'array', ['i']) corresponds to a = array[i], while Let('array', ['i'], 'b') corresponds to array[i] = b. Let('array', ['i'], 'array', ['j']) corresponding to array[i] = array[j] is also supported.

Note that indexing can also be expressed through lambda expressions. For example, Let('a', 'array', ['i']) is equivalent to Let('a', lambda array, i: array[:, i]). Note how in this case the batch dimension has to be explicitly taken into account ([:, ]). Relaxed indexing on the right-hand side is only supported through lambda expressions due to its complexity. Relaxed indexing on the left-hand side is supported if exactly one probability weight tensor is in the list (e.g., Let('array', [lambda x: get_weights(x)], 'a')).

LetInt only supports setting the variable to an integer (Python int) or list of integers (as well as the same type via lambda expressions). Note that hard integer variables should only be used if they are independent of the input values, but they may depend on the input shape.

If you need help implementing your differentiable algorithm, you may schedule an appointment. This will also help me improve the documentation and usability.

🧪 Experiments

The experiments can be found in the experiments folder. Additional experiments will be added soon.

🔬 Sorting Supervision

The sorting supervision experiment can be run with

python experiments/train_sort.py

or by checking out this Colab notebook.

📖 Citing

If you used our library, please cite it as

@inproceedings{petersen2021learning,
  title={{Learning with Algorithmic Supervision via Continuous Relaxations}},
  author={Petersen, Felix and Borgelt, Christian and Kuehne, Hilde and Deussen, Oliver},
  booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

📜 License

algovision is released under the MIT license. See LICENSE for additional details.

Owner
Felix Petersen
Researcher @ University of Konstanz
Felix Petersen
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
A simple API wrapper for Discord interactions.

Your ultimate Discord interactions library for discord.py. About | Installation | Examples | Discord | PyPI About What is discord-py-interactions? dis

james 641 Jan 03, 2023
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022