Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Overview

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Official implementation of paper Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks.

Quick Start

Simulation Experiments

Preparation

You'll need some external large data, which can be downloaded via:

See our Jupyter notebooks at ./notebooks for SRA implementations.

CIFAR-10

Follow ./notebooks/sra_cifar10.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-110
  • Wide-ResNet-40
  • MobileNet-V2

ImageNet

We actually don't use ImageNet full train set. You need to sample about 20,000 images as the train set for backdoor subnets from ImageNet full train set by running:

python models/imagenet/prepare_data.py

(remember to configure the path to your ImageNet full train set first!)

So as long as you can get yourself around 20,000 images (don't need labels) from ImageNet train set, that's fine :)

Then follow ./notebooks/sra_imagenet.ipynb, you can try subnet replacement attacks on:

  • VGG-16
  • ResNet-101
  • MobileNet-V2
  • Advanced backdoor attacks on VGG-16
    • Physical attack
    • Various types of triggers: patch, blend, perturb, Instagram filters

VGG-Face

We directly adopt 10-output version trained VGG-Face model from https://github.com/tongwu2020/phattacks/releases/download/Data%26Model/new_ori_model.pt, and most work from https://github.com/tongwu2020/phattacks.

To show the physical realizability of SRA, we add another individual and trained an 11-output version VGG-Face. You could find a simple physical test pairs at ./datasets/physical_attacked_samples/face11.jpg and ./datasets/physical_attacked_samples/face11_phoenix.jpg.

Follow ./notebooks/sra_vggface.ipynb, you can try subnet replacement attacks on:

  • 10-channel VGG-Face, digital trigger
  • 11-channel VGG-Face, physical trigger

Defense

We also test Neural Cleanse, against SRA, attempting to reverse engineer our injected trigger. The code implementation is available at ./notebooks/neural_cleanse.ipynb, mostly borrowed from TrojanZoo. Some reverse engineered triggers generated by us are available under ./defenses.

System-Level Experiments

See ./system_attacks/README.md for details.

Results & Demo

Digital Triggers

CIFAR-10

Model Arch ASR(%) CAD(%)
VGG-16 100.00 0.24
ResNet-110 99.74 3.45
Wide-ResNet-40 99.66 0.64
MobileNet-V2 99.65 9.37

ImageNet

Model Arch Top1 ASR(%) Top5 ASR(%) Top1 CAD(%) Top5 CAD(%)
VGG-16 99.92 100.00 1.28 0.67
ResNet-101 100.00 100.00 5.68 2.47
MobileNet-V2 99.91 99.96 13.56 9.31

Physical Triggers

We generate physically transformed triggers in advance like:

Then we patch them to clean inputs for training, e.g.:

Physically robust backdoor attack demo:

See ./notebooks/sra_imagenet.ipynb for details.

More Triggers

See ./notebooks/sra_imagenet.ipynb for details.

Repository Structure

.
├── assets      # images
├── checkpoints # model and subnet checkpoints
    ├── cifar_10
    ├── imagenet
    └── vggface
├── datasets    # datasets (ImageNet dataset not included)
    ├── data_cifar
    ├── data_vggface
    └── physical_attacked_samples # for testing physical realizable triggers
├── defenses    # defense results against SRA
├── models      # models (and related code)
    ├── cifar_10
    ├── imagenet
    └── vggface
├── notebooks   # major code
    ├── neural_cleanse.ipynb
    ├── sra_cifar10.ipynb # SRA on CIFAR-10
    ├── sra_imagenet.ipynb # SRA on ImageNet
    └── sra_vggface.ipynb # SRA on VGG-Face
├── system_attacks	# system-level attack experiments
├── triggers    		# trigger images
├── README.md   		# this file
└── utils.py    		# code for subnet replacement, average meter etc.
Owner
Xiangyu Qi
PHD student @ Princeton ECE.
Xiangyu Qi
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization This is the PyTorch implemention of our paper FedBN: Federated Learning on

<a href=[email protected]"> 156 Dec 15, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022