Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Overview

Neural Descriptor Fields (NDF)

PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and using these descriptor fields to mimic demonstrations of a pick-and-place task on a robotic system

drawing


This is the reference implementation for our paper:

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation

drawing drawing

PDF | Video

Anthony Simeonov*, Yilun Du*, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal**, Vincent Sitzmann** (*Equal contribution, order determined by coin flip. **Equal advising)


Google Colab

If you want a quickstart demo of NDF without installing anything locally, we have written a Colab. It runs the same demo as the Quickstart Demo section below where a local coordinate frame near one object is sampled, and the corresponding local frame near a new object (with a different shape and pose) is recovered via our energy optimization procedure.


Setup

Clone this repo

git clone --recursive https://github.com/anthonysimeonov/ndf_robot.git
cd ndf_robot

Install dependencies (using a virtual environment is highly recommended):

pip install -e .

Setup additional tools (Franka Panda inverse kinematics -- unnecessary if not using simulated robot for evaluation):

cd pybullet-planning/pybullet_tools/ikfast/franka_panda
python setup.py

Setup environment variables (this script must be sourced in each new terminal where code from this repository is run)

source ndf_env.sh

Quickstart Demo

Download pretrained weights

./scripts/download_demo_weights.sh

Download data assets

./scripts/download_demo_data.sh

Run example script

cd src/ndf_robot/eval
python ndf_demo.py

The code in the NDFAlignmentCheck class in the file src/ndf_robot/eval/ndf_alignment.py contains a minimal implementation of our SE(3)-pose energy optimization procedure. This is what is used in the Quickstart demo above. For a similar implementation that is integrated with our pick-and-place from demonstrations pipeline, see src/ndf_robot/opt/optimizer.py

Training

Download all data assets

If you want the full dataset (~150GB for 3 object classes):

./scripts/download_training_data.sh 

If you want just the mug dataset (~50 GB -- other object class data can be downloaded with the according scripts):

./scripts/download_mug_training_data.sh 

If you want to recreate your own dataset, see Data Generation section

Run training

cd src/ndf_robot/training
python train_vnn_occupancy_net.py --obj_class all --experiment_name  ndf_training_exp

More information on training here

Evaluation with simulated robot

Make sure you have set up the additional inverse kinematics tools (see Setup section)

Download all the object data assets

./scripts/download_obj_data.sh

Download pretrained weights

./scripts/download_demo_weights.sh

Download demonstrations

./scripts/download_demo_demonstrations.sh

Run evaluation

If you are running this command on a remote machine, be sure to remove the --pybullet_viz flag!

cd src/ndf_robot/eval
CUDA_VISIBLE_DEVICES=0 python evaluate_ndf.py \
        --demo_exp grasp_rim_hang_handle_gaussian_precise_w_shelf \
        --object_class mug \
        --opt_iterations 500 \
        --only_test_ids \
        --rand_mesh_scale \
        --model_path multi_category_weights \
        --save_vis_per_model \
        --config eval_mug_gen \
        --exp test_mug_eval \
        --pybullet_viz

More information on experimental evaluation can be found here.

Data Generation

Download all the object data assets

./scripts/download_obj_data.sh

Run data generation

cd src/ndf_robot/data_gen
python shapenet_pcd_gen.py \
    --total_samples 100 \
    --object_class mug \
    --save_dir test_mug \
    --rand_scale \
    --num_workers 2

More information on dataset generation can be found here.

Collect new demonstrations with teleoperated robot in PyBullet

Make sure you have downloaded all the object data assets (see Data Generation section)

Run teleoperation pipeline

cd src/ndf_robot/demonstrations
python label_demos.py --exp test_bottle --object_class bottle --with_shelf

More information on collecting robot demonstrations can be found here.

Citing

If you find our paper or this code useful in your work, please cite our paper:

@article{simeonovdu2021ndf,
  title={Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation},
  author={Simeonov, Anthony and Du, Yilun and Tagliasacchi, Andrea and Tenenbaum, Joshua B. and Rodriguez, Alberto and Agrawal, Pulkit and Sitzmann, Vincent},
  journal={arXiv preprint arXiv:2112.05124},
  year={2021}
}

Acknowledgements

Parts of this code were built upon the implementations found in the occupancy networks repo and the vector neurons repo. Check out their projects as well!

Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Deep Learning pipeline for motor-imagery classification.

BCI-ToolBox 1. Introduction BCI-ToolBox is deep learning pipeline for motor-imagery classification. This repo contains five models: ShallowConvNet, De

DongHee 18 Oct 31, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022