Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Overview

Neural Descriptor Fields (NDF)

PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and using these descriptor fields to mimic demonstrations of a pick-and-place task on a robotic system

drawing


This is the reference implementation for our paper:

Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation

drawing drawing

PDF | Video

Anthony Simeonov*, Yilun Du*, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez, Pulkit Agrawal**, Vincent Sitzmann** (*Equal contribution, order determined by coin flip. **Equal advising)


Google Colab

If you want a quickstart demo of NDF without installing anything locally, we have written a Colab. It runs the same demo as the Quickstart Demo section below where a local coordinate frame near one object is sampled, and the corresponding local frame near a new object (with a different shape and pose) is recovered via our energy optimization procedure.


Setup

Clone this repo

git clone --recursive https://github.com/anthonysimeonov/ndf_robot.git
cd ndf_robot

Install dependencies (using a virtual environment is highly recommended):

pip install -e .

Setup additional tools (Franka Panda inverse kinematics -- unnecessary if not using simulated robot for evaluation):

cd pybullet-planning/pybullet_tools/ikfast/franka_panda
python setup.py

Setup environment variables (this script must be sourced in each new terminal where code from this repository is run)

source ndf_env.sh

Quickstart Demo

Download pretrained weights

./scripts/download_demo_weights.sh

Download data assets

./scripts/download_demo_data.sh

Run example script

cd src/ndf_robot/eval
python ndf_demo.py

The code in the NDFAlignmentCheck class in the file src/ndf_robot/eval/ndf_alignment.py contains a minimal implementation of our SE(3)-pose energy optimization procedure. This is what is used in the Quickstart demo above. For a similar implementation that is integrated with our pick-and-place from demonstrations pipeline, see src/ndf_robot/opt/optimizer.py

Training

Download all data assets

If you want the full dataset (~150GB for 3 object classes):

./scripts/download_training_data.sh 

If you want just the mug dataset (~50 GB -- other object class data can be downloaded with the according scripts):

./scripts/download_mug_training_data.sh 

If you want to recreate your own dataset, see Data Generation section

Run training

cd src/ndf_robot/training
python train_vnn_occupancy_net.py --obj_class all --experiment_name  ndf_training_exp

More information on training here

Evaluation with simulated robot

Make sure you have set up the additional inverse kinematics tools (see Setup section)

Download all the object data assets

./scripts/download_obj_data.sh

Download pretrained weights

./scripts/download_demo_weights.sh

Download demonstrations

./scripts/download_demo_demonstrations.sh

Run evaluation

If you are running this command on a remote machine, be sure to remove the --pybullet_viz flag!

cd src/ndf_robot/eval
CUDA_VISIBLE_DEVICES=0 python evaluate_ndf.py \
        --demo_exp grasp_rim_hang_handle_gaussian_precise_w_shelf \
        --object_class mug \
        --opt_iterations 500 \
        --only_test_ids \
        --rand_mesh_scale \
        --model_path multi_category_weights \
        --save_vis_per_model \
        --config eval_mug_gen \
        --exp test_mug_eval \
        --pybullet_viz

More information on experimental evaluation can be found here.

Data Generation

Download all the object data assets

./scripts/download_obj_data.sh

Run data generation

cd src/ndf_robot/data_gen
python shapenet_pcd_gen.py \
    --total_samples 100 \
    --object_class mug \
    --save_dir test_mug \
    --rand_scale \
    --num_workers 2

More information on dataset generation can be found here.

Collect new demonstrations with teleoperated robot in PyBullet

Make sure you have downloaded all the object data assets (see Data Generation section)

Run teleoperation pipeline

cd src/ndf_robot/demonstrations
python label_demos.py --exp test_bottle --object_class bottle --with_shelf

More information on collecting robot demonstrations can be found here.

Citing

If you find our paper or this code useful in your work, please cite our paper:

@article{simeonovdu2021ndf,
  title={Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation},
  author={Simeonov, Anthony and Du, Yilun and Tagliasacchi, Andrea and Tenenbaum, Joshua B. and Rodriguez, Alberto and Agrawal, Pulkit and Sitzmann, Vincent},
  journal={arXiv preprint arXiv:2112.05124},
  year={2021}
}

Acknowledgements

Parts of this code were built upon the implementations found in the occupancy networks repo and the vector neurons repo. Check out their projects as well!

A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Alleviating Over-segmentation Errors by Detecting Action Boundaries

Alleviating Over-segmentation Errors by Detecting Action Boundaries Forked from ASRF offical code. This repo is the a implementation of replacing orig

13 Dec 12, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
QuadTree Attention for Vision Transformers (ICLR2022)

This repository contains codes for quadtree attention. This repo contains codes for feature matching, image classficiation, object detection and seman

tangshitao 222 Dec 28, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022