Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

Overview

LieTransformer

This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-attention for Lie Groups

Pattern recognition Molecular property prediction Particle Dynamics
Constellations Rotating molecule Particle trajectories

Introduction

LieTransformer is a equivariant Transformer-like model, built out of equivariant self attention layers (LieSelfAttention). The model can be made equivariant to any Lie group, simply by providing and implementation of the group of interest. A number of commonly used groups are already implemented, building off the work of LieConv. Switching group equivariance requires no change to model architecture, only passsing a different group to the model.

Architecture

The overall architecture of the LieTransformer is similar to the architecture of the original Transformer, interleaving series of attention layers and pointwise MLPs in residual blocks. The architecture of the LieSelfAttention blocks differs however, and can be seen below. For more details, please see the paper.

model diagram

Installation

To repoduce the experiments in this library, first clone the repo via https://github.com/anonymous-code-0/lie-transformer. To install the dependencies and create a virtual environment, execute setup_virtualenv.sh. Alternatively you can install the library and its dependencies without creating a virtual environment via pip install -e ..

To install the library as a dependency for another project use https://github.com/anonymous-code-0/lie-transformer.

Alternatively, you can install all the dependencies using pip install -r requirements.txt. If you do so, you will need to install the LieConv, Forge, and this repo itself (using the pip install -e command). Please note the version of LieConv used in this project is a slightly modified version of the original repo which fixes a bug for updated PyTorch versions.

Training a model

Example command to train a model (in this case the Set Transformer on the constellation dataset):

python3 scripts/train_constellation.py --data_config configs/constellation.py --model_config configs/set_transformer.py --run_name my_experiment --learning_rate=1e-4 --batch_size 128

The model and the dataset can be chosen by specifying different config files. Flags for configuring the model and the dataset are available in the respective config files. The project is using forge for configs and experiment management. Please refer to examples for details.

Counting patterns in the constellation dataset

The first task implemented is counting patterns in the constellation dataset. We generate a fixed dataset of constellations, where each constellation consists of 0-8 patterns; each pattern consists of corners of a shape. Currently available shapes are triangle, square, pentagon and an L. The task is to count the number of occurences of each pattern. To save to file the constellation datasets, run before training:

python3 scripts/data_to_file.py

Else, the constellation datasets are regenerated at the beginning of the training.

Dataset and model consistency

When changing the dataset parameters (e.g. number of patterns, types of patterns etc) make sure that the model parameters are adjusted accordingly. For example patterns=square,square,triangle,triangle,pentagon,pentagon,L,L means that there can be four different patterns, each repeated two times. That means that counting will involve four three-way classification tasks, and so that n_outputs and output_dim in classifier.py needs to be set to 4 and 3, respectively. All this can be set through command-line arguments.

Results

Constellations results

QM9

This dataset consists of 133,885 small inorganic molecules described by the location and charge of each atom in the molecule, along with the bonding structure of the molecule. The dataset includes 19 properties of each molecule, such as various rotational constants, energies and enthalpies. We aim to predict 12 of these properties.

python scripts/train_molecule.py \
    --run_name "molecule_homo" \
    --model_config "configs/molecule/eqv_transformer_model.py" \
    --model_seed 0
    --data_seed 0 \
    --task homo

Configurable scripts for running the experiments in the paper exist in the scripts folder, scripts/train_molecule_SE3transformer.sh, scripts/train_molecule_SE3lieconv.sh.

Results

QM9 results

Hamiltonian dynamics

In this experiment we aim to predict the trajectory of a number of particles connected together by a series of springs. This is done by learning the Hamiltonian of the system from observed trajectories.

The following command generates a dataset of trajectories and trains LieTransformer on it

T(2) default: python scripts/train_dynamics.py
SE(2) default: python scripts/train_dynamics.py --group 'SE(2)_canonical' --lift_samples 2 --num_layers 3 --dim_hidden 80

Results

Rollout MSE Example Trajectories
dynamics rollout trajectories

Contributing

Contributions are best developed in separate branches. Once a change is ready, please submit a pull request with a description of the change. New model and data configs should go into the config folder, and the rest of the code should go into the eqv_transformer folder.

Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
🛰️ Awesome Satellite Imagery Datasets

Awesome Satellite Imagery Datasets List of aerial and satellite imagery datasets with annotations for computer vision and deep learning. Newest datase

Christoph Rieke 3k Jan 03, 2023
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022