Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Overview

License CC BY-NC-SA 4.0 Python 2.7

Geometry-Aware Learning of Maps for Camera Localization

This is the PyTorch implementation of our CVPR 2018 paper

"Geometry-Aware Learning of Maps for Camera Localization" - CVPR 2018 (Spotlight). Samarth Brahmbhatt, Jinwei Gu, Kihwan Kim, James Hays, and Jan Kautz

A four-minute video summary (click below for the video)

mapnet

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{mapnet2018,
  title={Geometry-Aware Learning of Maps for Camera Localization},
  author={Samarth Brahmbhatt and Jinwei Gu and Kihwan Kim and James Hays and Jan Kautz},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2018}
}

Table of Contents

Documentation

Setup

MapNet uses a Conda environment that makes it easy to install all dependencies.

  1. Install miniconda with Python 2.7.

  2. Create the mapnet Conda environment: conda env create -f environment.yml.

  3. Activate the environment: conda activate mapnet_release.

  4. Note that our code has been tested with PyTorch v0.4.1 (the environment.yml file should take care of installing the appropriate version).

Data

We support the 7Scenes and Oxford RobotCar datasets right now. You can also write your own PyTorch dataloader for other datasets and put it in the dataset_loaders directory. Refer to this README file for more details.

The datasets live in the data/deepslam_data directory. We provide skeletons with symlinks to get you started. Let us call your 7Scenes download directory 7SCENES_DIR and your main RobotCar download directory (in which you untar all the downloads from the website) ROBOTCAR_DIR. You will need to make the following symlinks:

cd data/deepslam_data && ln -s 7SCENES_DIR 7Scenes && ln -s ROBOTCAR_DIR RobotCar_download


Special instructions for RobotCar: (only needed for RobotCar data)

  1. Download this fork of the dataset SDK, and run cd scripts && ./make_robotcar_symlinks.sh after editing the ROBOTCAR_SDK_ROOT variable in it appropriately.

  2. For each sequence, you need to download the stereo_centre, vo and gps tar files from the dataset website (more details in this comment).

  3. The directory for each 'scene' (e.g. full) has .txt files defining the train/test split. While training MapNet++, you must put the sequences for self-supervised learning (dataset T in the paper) in the test_split.txt file. The dataloader for the MapNet++ models will use both images and ground-truth pose from sequences in train_split.txt and only images from the sequences in test_split.txt.

  4. To make training faster, we pre-processed the images using scripts/process_robotcar_images.py. This script undistorts the images using the camera models provided by the dataset, and scales them such that the shortest side is 256 pixels.


Running the code

Demo/Inference

The trained models for all experiments presented in the paper can be downloaded here. The inference script is scripts/eval.py. Here are some examples, assuming the models are downloaded in scripts/logs. Please go to the scripts folder to run the commands.

7_Scenes

  • MapNet++ with pose-graph optimization (i.e., MapNet+PGO) on heads:
$ python eval.py --dataset 7Scenes --scene heads --model mapnet++ \
--weights logs/7Scenes_heads_mapnet++_mapnet++_7Scenes/epoch_005.pth.tar \
--config_file configs/pgo_inference_7Scenes.ini --val --pose_graph
Median error in translation = 0.12 m
Median error in rotation    = 8.46 degrees

7Scenes_heads_mapnet+pgo

  • For evaluating on the train split remove the --val flag

  • To save the results to disk without showing them on screen (useful for scripts), add the --output_dir ../results/ flag

  • See this README file for more information on hyper-parameters and which config files to use.

  • MapNet++ on heads:

$ python eval.py --dataset 7Scenes --scene heads --model mapnet++ \
--weights logs/7Scenes_heads_mapnet++_mapnet++_7Scenes/epoch_005.pth.tar \
--config_file configs/mapnet.ini --val
Median error in translation = 0.13 m
Median error in rotation    = 11.13 degrees
  • MapNet on heads:
$ python eval.py --dataset 7Scenes --scene heads --model mapnet \
--weights logs/7Scenes_heads_mapnet_mapnet_learn_beta_learn_gamma/epoch_250.pth.tar \
--config_file configs/mapnet.ini --val
Median error in translation = 0.18 m
Median error in rotation    = 13.33 degrees
  • PoseNet (CVPR2017) on heads:
$ python eval.py --dataset 7Scenes --scene heads --model posenet \
--weights logs/7Scenes_heads_posenet_posenet_learn_beta_logq/epoch_300.pth.tar \
--config_file configs/posenet.ini --val
Median error in translation = 0.19 m
Median error in rotation    = 12.15 degrees

RobotCar

  • MapNet++ with pose-graph optimization on loop:
$ python eval.py --dataset RobotCar --scene loop --model mapnet++ \
--weights logs/RobotCar_loop_mapnet++_mapnet++_RobotCar_learn_beta_learn_gamma_2seq/epoch_005.pth.tar \
--config_file configs/pgo_inference_RobotCar.ini --val --pose_graph
Mean error in translation = 6.74 m
Mean error in rotation    = 2.23 degrees

RobotCar_loop_mapnet+pgo

  • MapNet++ on loop:
$ python eval.py --dataset RobotCar --scene loop --model mapnet++ \
--weights logs/RobotCar_loop_mapnet++_mapnet++_RobotCar_learn_beta_learn_gamma_2seq/epoch_005.pth.tar \
--config_file configs/mapnet.ini --val
Mean error in translation = 6.95 m
Mean error in rotation    = 2.38 degrees
  • MapNet on loop:
$ python eval.py --dataset RobotCar --scene loop --model mapnet \
--weights logs/RobotCar_loop_mapnet_mapnet_learn_beta_learn_gamma/epoch_300.pth.tar \
--config_file configs/mapnet.ini --val
Mean error in translation = 9.84 m
Mean error in rotation    = 3.96 degrees

Train

The executable script is scripts/train.py. Please go to the scripts folder to run these commands. For example:

  • PoseNet on chess from 7Scenes: python train.py --dataset 7Scenes --scene chess --config_file configs/posenet.ini --model posenet --device 0 --learn_beta --learn_gamma

train.png

  • MapNet on chess from 7Scenes: python train.py --dataset 7Scenes --scene chess --config_file configs/mapnet.ini --model mapnet --device 0 --learn_beta --learn_gamma

  • MapNet++ is finetuned on top of a trained MapNet model: python train.py --dataset 7Scenes --checkpoint <trained_mapnet_model.pth.tar> --scene chess --config_file configs/mapnet++_7Scenes.ini --model mapnet++ --device 0 --learn_beta --learn_gamma

For example, we can train MapNet++ model on heads from a pretrained MapNet model:

$ python train.py --dataset 7Scenes \
--checkpoint logs/7Scenes_heads_mapnet_mapnet_learn_beta_learn_gamma/epoch_250.pth.tar \
--scene heads --config_file configs/mapnet++_7Scenes.ini --model mapnet++ \
--device 0 --learn_beta --learn_gamma

For MapNet++ training, you will need visual odometry (VO) data (or other sensory inputs such as noisy GPS measurements). For 7Scenes, we provided the preprocessed VO computed with the DSO method. For RobotCar, we use the provided stereo_vo. If you plan to use your own VO data (especially from a monocular camera) for MapNet++ training, you will need to first align the VO with the world coordinate (for rotation and scale). Please refer to the "Align VO" section below for more detailed instructions.

The meanings of various command-line parameters are documented in scripts/train.py. The values of various hyperparameters are defined in a separate .ini file. We provide some examples in the scripts/configs directory, along with a README file explaining some hyper-parameters.

If you have visdom = yes in the config file, you will need to start a Visdom server for logging the training progress:

python -m visdom.server -env_path=scripts/logs/.


Network Attention Visualization

Calculates the network attention visualizations and saves them in a video

  • For the MapNet model trained on chess in 7Scenes:
$ python plot_activations.py --dataset 7Scenes --scene chess
--weights <filename.pth.tar> --device 1 --val --config_file configs/mapnet.ini
--output_dir ../results/

Check here for an example video of computed network attention of PoseNet vs. MapNet++.


Other Tools

Align VO to the ground truth poses

This has to be done before using VO in MapNet++ training. The executable script is scripts/align_vo_poses.py.

  • For the first sequence from chess in 7Scenes: python align_vo_poses.py --dataset 7Scenes --scene chess --seq 1 --vo_lib dso. Note that alignment for 7Scenes needs to be done separately for each sequence, and so the --seq flag is needed

  • For all 7Scenes you can also use the script align_vo_poses_7scenes.sh The script stores the information at the proper location in data

Mean and stdev pixel statistics across a dataset

This must be calculated before any training. Use the scripts/dataset_mean.py, which also saves the information at the proper location. We provide pre-computed values for RobotCar and 7Scenes.

Calculate pose translation statistics

Calculates the mean and stdev and saves them automatically to appropriate files python calc_pose_stats.py --dataset 7Scenes --scene redkitchen This information is needed to normalize the pose regression targets, so this script must be run before any training. We provide pre-computed values for RobotCar and 7Scenes.

Plot the ground truth and VO poses for debugging

python plot_vo_poses.py --dataset 7Scenes --scene heads --vo_lib dso --val. To save the output instead of displaying on screen, add the --output_dir ../results/ flag

Process RobotCar GPS

The scripts/process_robotcar_gps.py script must be run before using GPS for MapNet++ training. It converts the csv file into a format usable for training.

Demosaic and undistort RobotCar images

This is advisable to do beforehand to speed up training. The scripts/process_robotcar_images.py script will do that and save the output images to a centre_processed directory in the stereo directory. After the script finishes, you must rename this directory to centre so that the dataloader uses these undistorted and demosaiced images.

FAQ

Collection of issues and resolution comments that might be useful:

License

Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
A2LP for short, ECCV2020 spotlight, Investigating SSL principles for UDA problems

Label-Propagation-with-Augmented-Anchors (A2LP) Official codes of the ECCV2020 spotlight (label propagation with augmented anchors: a simple semi-supe

20 Oct 27, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022