Elevation Mapping on GPU.

Overview

Elevation Mapping cupy

Overview

This is a ros package of elevation mapping on GPU.
Code are written in python and uses cupy for GPU calculation.
screenshot

* plane segmentation is coming soon.

Citing

Takahiro Miki, Lorenz Wellhausen, Ruben Grandia, Fabian Jenelten, Timon Homberger, Marco Hutter
Elevation Mapping for Locomotion and Navigation using GPU arXiv

@misc{https://doi.org/10.48550/arxiv.2204.12876,
  doi = {10.48550/ARXIV.2204.12876},
  
  url = {https://arxiv.org/abs/2204.12876},
  
  author = {Miki, Takahiro and Wellhausen, Lorenz and Grandia, Ruben and Jenelten, Fabian and Homberger, Timon and Hutter, Marco},
  
  keywords = {Robotics (cs.RO), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Elevation Mapping for Locomotion and Navigation using GPU},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

Installation

CUDA & cuDNN

The tested versions are CUDA10.2, 11.6

CUDA
cuDNN.

Check how to install here.

Python dependencies

You will need

For traversability filter, either of

Optinally, opencv for inpainting filter.

Install numpy, scipy, shapely, opencv-python with the following command.

pip3 install -r requirements.txt

Cupy

cupy can be installed with specific CUDA versions. (On jetson, only "from source" i.e. pip install cupy could work)

For CUDA 10.2 pip install cupy-cuda102

For CUDA 11.0 pip install cupy-cuda110

For CUDA 11.1 pip install cupy-cuda111

For CUDA 11.2 pip install cupy-cuda112

For CUDA 11.3 pip install cupy-cuda113

For CUDA 11.4 pip install cupy-cuda114

For CUDA 11.5 pip install cupy-cuda115

For CUDA 11.6 pip install cupy-cuda116

(Install CuPy from source) % pip install cupy

Traversability filter

You can choose either pytorch, or chainer to run the CNN based traversability filter.
Install by following the official documents.

Pytorch uses ~2GB more GPU memory than Chainer, but runs a bit faster.
Use parameter use_chainer to select which backend to use.

ROS package dependencies

sudo apt install ros-noetic-pybind11-catkin
sudo apt install ros-noetic-grid-map-core ros-noetic-grid-map-msgs

On Jetson

CUDA CuDNN

CUDA and cuDNN can be installed via apt. It comes with nvidia-jetpack. The tested version is jetpack 4.5 with L4T 32.5.0.

python dependencies

On jetson, you need the version for its CPU arch:

wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.8.0-cp36-cp36m-linux_aarch64.whl
pip3 install Cython
pip3 install numpy==1.19.5 torch-1.8.0-cp36-cp36m-linux_aarch64.whl

Also, you need to install cupy with

pip3 install cupy

This builds the packages from source so it would take time.

ROS dependencies

sudo apt install ros-melodic-pybind11-catkin
sudo apt install ros-melodic-grid-map-core ros-melodic-grid-map-msgs

Also, on jetson you need fortran (should already be installed).

sudo apt install gfortran

If the Jetson is set up with Jetpack 4.5 with ROS Melodic the following package is additionally required:

git clone [email protected]:ros/filters.git -b noetic-devel

Usage

Build

catkin build elevation_mapping_cupy

Errors

If you get error such as

Make Error at /usr/share/cmake-3.16/Modules/FindPackageHandleStandardArgs.cmake:146 (message):
  Could NOT find PythonInterp: Found unsuitable version "2.7.18", but
  required is at least "3" (found /usr/bin/python)

Build with option.

catkin build elevation_mapping_cupy -DPYTHON_EXECUTABLE=$(which python3)

Run

Basic usage.

roslaunch elevation_mapping_cupy elevation_mapping_cupy.launch

Run TurtleBot example

First, install turtlebot simulation.

sudo apt install ros-noetic-turtlebot3*

Then, you can run the example.

export TURTLEBOT3_MODEL=waffle
roslaunch elevation_mapping_cupy turtlesim_example.launch

To control the robot with a keyboard, a new terminal window needs to be opened.
Then run

export TURTLEBOT3_MODEL=waffle
roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Velocity inputs can be sent to the robot by pressing the keys a, w, d, x. To stop the robot completely, press s.

Subscribed Topics

  • topics specified in pointcloud_topics in parameters.yaml ([sensor_msgs/PointCloud2])

    The distance measurements.

  • /tf ([tf/tfMessage])

    The transformation tree.

Published Topics

The topics are published as set in the rosparam.
You can specify which layers to publish in which fps.

Under publishers, you can specify the topic_name, layers basic_layers and fps.

publishers:
  your_topic_name:
    layers: ['list_of_layer_names', 'layer1', 'layer2']             # Choose from 'elevation', 'variance', 'traversability', 'time' + plugin layers
    basic_layers: ['list of basic layers', 'layer1']                # basic_layers for valid cell computation (e.g. Rviz): Choose a subset of `layers`.
    fps: 5.0                                                        # Publish rate. Use smaller value than `map_acquire_fps`.

Example setting in config/parameters.yaml.

  • elevation_map_raw ([grid_map_msg/GridMap])

    The entire elevation map.

  • elevation_map_recordable ([grid_map_msg/GridMap])

    The entire elevation map with slower update rate for visualization and logging.

  • elevation_map_filter ([grid_map_msg/GridMap])

    The filtered maps using plugins.

Plugins

You can create your own plugin to process the elevation map and publish as a layer in GridMap message.

Let's look at the example.

First, create your plugin file in elevation_mapping_cupy/script/plugins/ and save as example.py.

import cupy as cp
from typing import List
from .plugin_manager import PluginBase


class NameOfYourPlugin(PluginBase):
    def __init__(self, add_value:float=1.0, **kwargs):
        super().__init__()
        self.add_value = float(add_value)

    def __call__(self, elevation_map: cp.ndarray, layer_names: List[str],
            plugin_layers: cp.ndarray, plugin_layer_names: List[str])->cp.ndarray:
        # Process maps here
        # You can also use the other plugin's data through plugin_layers.
        new_elevation = elevation_map[0] + self.add_value
        return new_elevation

Then, add your plugin setting to config/plugin_config.yaml

example:                                      # Use the same name as your file name.
  enable: True                                # weather to laod this plugin
  fill_nan: True                              # Fill nans to invalid cells of elevation layer.
  is_height_layer: True                       # If this is a height layer (such as elevation) or not (such as traversability)
  layer_name: "example_layer"                 # The layer name.
  extra_params:                               # This params are passed to the plugin class on initialization.
    add_value: 2.0                            # Example param

Finally, add your layer name to publishers in config/parameters.yaml. You can create a new topic or add to existing topics.

  plugin_example:   # Topic name
    layers: ['elevation', 'example_layer']
    basic_layers: ['example_layer']
    fps: 1.0        # The plugin is called with this fps.
Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

139 Dec 29, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
This repository contains part of the code used to make the images visible in the article "How does an AI Imagine the Universe?" published on Towards Data Science.

Generative Adversarial Network - Generating Universe This repository contains part of the code used to make the images visible in the article "How doe

Davide Coccomini 9 Dec 18, 2022
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
GAN-generated image detection based on CNNs

GAN-image-detection This repository contains a GAN-generated image detector developed to distinguish real images from synthetic ones. The detector is

Image and Sound Processing Lab 17 Dec 15, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022