CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

Overview

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP.

CLIP2Video is a video-text retrieval model based on CLIP (ViT-B/32), which transfers the image-language pre-training model to video-text retrieval in an end-to-end manner. Our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.

Pipeline Blocks

Introduction

This is the source code of CLIP2Video, a method for Video-Text Retrieval based on temporal correlations. It is built on top of the CLIP4Clip by ( Huaishao Luo et al.) in PyTorch.

Requirement

pip install -r requirements.txt 

Download data and Pre-trained Model

Supported public training sets:

  • MSR-VTT(9k)
  • MSR-VTT(full)
  • MSVD
  • VATEX-English Version

Supported public testing protocols:

  • MSR-VTT 1k-A protocol (SOTA)
  • MSR-VTT full protocol (SOTA)
  • MSVD(SOTA
  • VATEX-English version(SOTA

Download official video: Official videos of different data can be found as follows:

Pre-process

To train and test the above datasets: you should use sample_frame.py to transform video into frames.

python sample_frame.py --input_path [raw video path] --output_path [frame path]

(Optional) The splits and captions can be found in the links of used dataset. For the convenience, you can also use the split in data/ directly.

Download CLIP model

To train and test the above datasets based on pre-trained CLIP model, you should visit CLIP and download ViT-B/32.

Test Model

We provide three models trained on MSVD, MSR-VTT and VATEX-English.

Model Name checkpoint
CLIP2Video_MSVD link
CLIP2Video_MSRVTT9k link
CLIP2Video_VATEX link

To test the trained model, please refer test/.

(Optional) If the path of trained model(--checkpoint) doesn't exist, the parameters of basic CLIP (--clip_path) will be loaded.

Main Article Results of CLIP2Video

T2V:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 47.0 76.8 85.9 2 9.6
MSRVTT-9k 45.6 72.6 81.7 2 14.6
MSRVTT-Full 29.8 55.5 66.2 4 45.5
Vatex (English) random 1k5 split 57.3 90.0 95.5 1 3.6
Vatex (English) HGR split 61.2 90.9 95.6 1 3.4

V2T:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 58.7 85.6 91.6 1 4.3
MSRVTT-9k 43.5 72.3 82.1 2 10.2
MSRVTT-Full 54.6 82.1 90.8 1 5.3
Vatex (English) random 1k5 split 76.0 97.7 99.9 1 1.5
Vatex (English) HGR split 77.9 98.1 99.1 1 1.6

(Optional:) Clarification of different results in VATEX:

  1. In our paper, we do not strictly follow HGR's split, but randomly split the test set by ourselves, which is the split in

    • data/vatex_data/test1k5_sec_list.txt
  2. In HGR split, we adopt the totally same split following HGR, and the split can be seen as:

    • data/vatex_data/test_list.txt
    • data/vatex_data/val_list.txt

We will revise the results strictly following HGR split for fair comparison in the paper later!


Citation

If you find CLIP2Video useful in your work, you can cite the following paper:

@article{fang2021clip2video,
  title={CLIP2Video: Mastering Video-Text Retrieval via Image CLIP},
  author={Fang, Han and Xiong, Pengfei and Xu, Luhui and Chen, Yu},
  journal={arXiv preprint arXiv:2106.11097},
  year={2021}
}

Acknowledgments

Some components of this code implementation are adopted from CLIP and CLIP4Clip. We sincerely appreciate for their contributions.

Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
An offline deep reinforcement learning library

d3rlpy: An offline deep reinforcement learning library d3rlpy is an offline deep reinforcement learning library for practitioners and researchers. imp

Takuma Seno 817 Jan 02, 2023
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023
Aerial Imagery dataset for fire detection: classification and segmentation (Unmanned Aerial Vehicle (UAV))

Aerial Imagery dataset for fire detection: classification and segmentation using Unmanned Aerial Vehicle (UAV) Title FLAME (Fire Luminosity Airborne-b

79 Jan 06, 2023
PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

Subin An 8 Nov 21, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022