CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

Overview

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP.

CLIP2Video is a video-text retrieval model based on CLIP (ViT-B/32), which transfers the image-language pre-training model to video-text retrieval in an end-to-end manner. Our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.

Pipeline Blocks

Introduction

This is the source code of CLIP2Video, a method for Video-Text Retrieval based on temporal correlations. It is built on top of the CLIP4Clip by ( Huaishao Luo et al.) in PyTorch.

Requirement

pip install -r requirements.txt 

Download data and Pre-trained Model

Supported public training sets:

  • MSR-VTT(9k)
  • MSR-VTT(full)
  • MSVD
  • VATEX-English Version

Supported public testing protocols:

  • MSR-VTT 1k-A protocol (SOTA)
  • MSR-VTT full protocol (SOTA)
  • MSVD(SOTA
  • VATEX-English version(SOTA

Download official video: Official videos of different data can be found as follows:

Pre-process

To train and test the above datasets: you should use sample_frame.py to transform video into frames.

python sample_frame.py --input_path [raw video path] --output_path [frame path]

(Optional) The splits and captions can be found in the links of used dataset. For the convenience, you can also use the split in data/ directly.

Download CLIP model

To train and test the above datasets based on pre-trained CLIP model, you should visit CLIP and download ViT-B/32.

Test Model

We provide three models trained on MSVD, MSR-VTT and VATEX-English.

Model Name checkpoint
CLIP2Video_MSVD link
CLIP2Video_MSRVTT9k link
CLIP2Video_VATEX link

To test the trained model, please refer test/.

(Optional) If the path of trained model(--checkpoint) doesn't exist, the parameters of basic CLIP (--clip_path) will be loaded.

Main Article Results of CLIP2Video

T2V:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 47.0 76.8 85.9 2 9.6
MSRVTT-9k 45.6 72.6 81.7 2 14.6
MSRVTT-Full 29.8 55.5 66.2 4 45.5
Vatex (English) random 1k5 split 57.3 90.0 95.5 1 3.6
Vatex (English) HGR split 61.2 90.9 95.6 1 3.4

V2T:

Protocol [email protected] [email protected] [email protected] Median Rank Mean Rank
MSVD 58.7 85.6 91.6 1 4.3
MSRVTT-9k 43.5 72.3 82.1 2 10.2
MSRVTT-Full 54.6 82.1 90.8 1 5.3
Vatex (English) random 1k5 split 76.0 97.7 99.9 1 1.5
Vatex (English) HGR split 77.9 98.1 99.1 1 1.6

(Optional:) Clarification of different results in VATEX:

  1. In our paper, we do not strictly follow HGR's split, but randomly split the test set by ourselves, which is the split in

    • data/vatex_data/test1k5_sec_list.txt
  2. In HGR split, we adopt the totally same split following HGR, and the split can be seen as:

    • data/vatex_data/test_list.txt
    • data/vatex_data/val_list.txt

We will revise the results strictly following HGR split for fair comparison in the paper later!


Citation

If you find CLIP2Video useful in your work, you can cite the following paper:

@article{fang2021clip2video,
  title={CLIP2Video: Mastering Video-Text Retrieval via Image CLIP},
  author={Fang, Han and Xiong, Pengfei and Xu, Luhui and Chen, Yu},
  journal={arXiv preprint arXiv:2106.11097},
  year={2021}
}

Acknowledgments

Some components of this code implementation are adopted from CLIP and CLIP4Clip. We sincerely appreciate for their contributions.

Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
For the paper entitled ''A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining''

Summary This is the source code for the paper "A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining", which was accepted as fu

1 Nov 10, 2021
[Preprint] "Chasing Sparsity in Vision Transformers: An End-to-End Exploration" by Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, Zhangyang Wang

Chasing Sparsity in Vision Transformers: An End-to-End Exploration Codes for [Preprint] Chasing Sparsity in Vision Transformers: An End-to-End Explora

VITA 64 Dec 08, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
A port of muP to JAX/Haiku

MUP for Haiku This is a (very preliminary) port of Yang and Hu et al.'s μP repo to Haiku and JAX. It's not feature complete, and I'm very open to sugg

18 Dec 30, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022