Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Overview

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

report report

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation,
Zicong Fan, Adrian Spurr, Muhammed Kocabas, Siyu Tang, Michael J. Black, Otmar Hilliges International Conference on 3D Vision (3DV), 2021

Image

Features

DIGIT estimates the 3D poses of two interacting hands from a single RGB image. This repo provides the training, evaluation, and demo code for the project in PyTorch Lightning.

Updates

  • November 25 2021: Initial repo with training and evaluation on PyTorch Lightning 0.9.

Setting up environment

DIGIT has been implemented and tested on Ubuntu 18.04 with python >= 3.7, PyTorch Lightning 0.9 and PyTorch 1.6.

Clone the repo:

git clone https://github.com/zc-alexfan/digit-interacting

Create folders needed:

make folders

Install conda environment:

conda create -n digit python=3.7
conda deactivate
conda activate digit
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
pip install -r requirements.txt

Downloading InterHand2.6M

  • Download the 5fps.v1 of InterHand2.6M, following the instructions here
  • Place annotations, images, and rootnet_output from InterHand2.6M under ./data/InterHand/*:
./data/InterHand
├── annotations
├── images
│   ├── test
│   ├── train
│   └── val
├── rootnet_output
│   ├── rootnet_interhand2.6m_output_all_test.json
│   └── rootnet_interhand2.6m_output_machine_annot_val.json
|-- annotations
|-- images
|   |-- test
|   |-- train
|   `-- val
`-- rootnet_output
    |-- rootnet_interhand2.6m_output_test.json
    `-- rootnet_interhand2.6m_output_val.json
  • The folder ./data/InterHand/annotations should look like this:
./data/InterHand/annotations
|-- skeleton.txt
|-- subject.txt
|-- test
|   |-- InterHand2.6M_test_MANO_NeuralAnnot.json
|   |-- InterHand2.6M_test_camera.json
|   |-- InterHand2.6M_test_data.json
|   `-- InterHand2.6M_test_joint_3d.json
|-- train
|   |-- InterHand2.6M_train_MANO_NeuralAnnot.json
|   |-- InterHand2.6M_train_camera.json
|   |-- InterHand2.6M_train_data.json
|   `-- InterHand2.6M_train_joint_3d.json
`-- val
    |-- InterHand2.6M_val_MANO_NeuralAnnot.json
    |-- InterHand2.6M_val_camera.json
    |-- InterHand2.6M_val_data.json
    `-- InterHand2.6M_val_joint_3d.json

Preparing data and backbone for training

Download the ImageNet-pretrained backbone from here and place it under:

./saved_models/pytorch/imagenet/hrnet_w32-36af842e.pt

Package images into lmdb:

cd scripts
python package_images_lmdb.py

Preprocess annotation:

python preprocess_annot.py

Render part segmentation masks:

  • Following the README.md of render_mano_ih to prepare an LMDB of part segmentation. For question in preparing the segmentation masks, please keep issues in there.

Place the LMDB from the images, the segmentation masks, and meta_dict_*.pkl to ./data/InterHand and it should look like the structure below. The cache files meta_dict_*.pkl are by-products of the step above.

|-- annotations
|   |-- skeleton.txt
|   |-- subject.txt
|   |-- test
|   |   |-- InterHand2.6M_test_MANO_NeuralAnnot.json
|   |   |-- InterHand2.6M_test_camera.json
|   |   |-- InterHand2.6M_test_data.json
|   |   |-- InterHand2.6M_test_data.pkl
|   |   `-- InterHand2.6M_test_joint_3d.json
|   |-- train
|   |   |-- InterHand2.6M_train_MANO_NeuralAnnot.json
|   |   |-- InterHand2.6M_train_camera.json
|   |   |-- InterHand2.6M_train_data.json
|   |   |-- InterHand2.6M_train_data.pkl
|   |   `-- InterHand2.6M_train_joint_3d.json
|   `-- val
|       |-- InterHand2.6M_val_MANO_NeuralAnnot.json
|       |-- InterHand2.6M_val_camera.json
|       |-- InterHand2.6M_val_data.json
|       |-- InterHand2.6M_val_data.pkl
|       `-- InterHand2.6M_val_joint_3d.json
|-- cache
|   |-- meta_dict_test.pkl
|   |-- meta_dict_train.pkl
|   `-- meta_dict_val.pkl
|-- images
|   |-- test
|   |-- train
|   `-- val
|-- rootnet_output
|   |-- rootnet_interhand2.6m_output_test.json
|   `-- rootnet_interhand2.6m_output_val.json
`-- segm_32.lmdb

Training and evaluating

To train DIGIT, run the command below. The script runs at a batch size of 64 using accumulated gradient where each iteration is on a batch size 32:

python train.py --iter_batch 32 --batch_size 64 --gpu_ids 0 --trainsplit train --precision 16 --eval_every_epoch 2 --lr_dec_epoch 40 --max_epoch 50 --min_epoch 50

OR if you just want to do a sanity check you can run:

python train.py --iter_batch 32 --batch_size 64 --gpu_ids 0 --trainsplit minitrain --valsplit minival --precision 16 --eval_every_epoch 1 --max_epoch 50 --min_epoch 50

Each time you run train.py, it will create a new experiment under logs and each experiment is assigned a key.

Supposed your experiment key is 2e8c5136b, you can evaluate the last epoch of the model on the test set by:

python test.py --eval_on minitest --load_ckpt logs/2e8c5136b/model_dump/last.ckpt

OR

python test.py --eval_on test --load_ckpt logs/2e8c5136b/model_dump/last.ckpt

The former only does the evaluation 1000 images for a sanity check.

Similarly, you can evaluate on the validation set:

python test.py --eval_on val --load_ckpt logs/2e8c5136b/model_dump/last.ckpt

Visualizing and evaluating pre-trained DIGIT

Here we provide instructions to show qualitative results of DIGIT.

Download pre-trained DIGIT:

wget https://dataset.ait.ethz.ch/downloads/dE6qPPePCV/db7cba8c1.pt
mv db7cba8c1.pt saved_models

Visualize results:

CUDA_VISIBLE_DEVICES=0 python demo.py --eval_on minival --load_from saved_models/db7cba8c1.pt  --num_workers 0

Evaluate pre-trained digit:

CUDA_VISIBLE_DEVICES=0 python test.py --eval_on test --load_from saved_models/db7cba8c1.pt --precision 16
CUDA_VISIBLE_DEVICES=0 python test.py --eval_on val --load_from saved_models/db7cba8c1.pt --precision 16

You should have the same results as in here.

The results will be dumped to ./visualization.

Citation

@inProceedings{fan2021digit,
  title={Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-pixel Part Segmentation},
  author={Fan, Zicong and Spurr, Adrian and Kocabas, Muhammed and Tang, Siyu and Black, Michael and Hilliges, Otmar},
  booktitle={International Conference on 3D Vision (3DV)},
  year={2021}
}

License

Since our code is developed based on InterHand2.6M, which is CC-BY-NC 4.0 licensed, the same LICENSE is applied to DIGIT.

DIGIT is CC-BY-NC 4.0 licensed, as found in the LICENSE file.

References

Some code in our repo uses snippets of the following repo:

Please consider citing them if you find our code useful:

@inproceedings{Moon_2020_ECCV_InterHand2.6M,  
author = {Moon, Gyeongsik and Yu, Shoou-I and Wen, He and Shiratori, Takaaki and Lee, Kyoung Mu},  
title = {InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image},  
booktitle = {European Conference on Computer Vision (ECCV)},  
year = {2020}  
}  

@inproceedings{sun2019deep,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={CVPR},
  year={2019}
}

@inproceedings{xiao2018simple,
    author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
    title={Simple Baselines for Human Pose Estimation and Tracking},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2018}
}

@misc{Charles2013,
  author = {milesial},
  title = {Pytorch-UNet},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/milesial/Pytorch-UNet}}
}

Contact

For any question, you can contact [email protected].

Owner
Zicong Fan
A Ph.D. student at ETH Zurich.
Zicong Fan
Generating Band-Limited Adversarial Surfaces Using Neural Networks

Generating Band-Limited Adversarial Surfaces Using Neural Networks This is the official repository of the technical report that was published on arXiv

3 Jul 26, 2022
LBK 26 Dec 28, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
A Real-ESRGAN equipped Colab notebook for CLIP Guided Diffusion

#360Diffusion automatically upscales your CLIP Guided Diffusion outputs using Real-ESRGAN. Latest Update: Alpha 1.61 [Main Branch] - 01/11/22 Layout a

78 Nov 02, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Garbage classification using structure data.

垃圾分类模型使用说明 1.包含以下数据文件 文件 描述 data/MaterialMapping.csv 物体以及其归类的信息 data/TestRecords 光谱原始测试数据 CSV 文件 data/TestRecordDesc.zip CSV 文件描述文件 data/Boundaries.cs

wenqi 1 Dec 10, 2021
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Gen Li 91 Dec 23, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022