This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Related tags

Deep LearningGPRGNN
Overview

GPRGNN

This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

Hidden state feature extraction is performed by a neural networks using individual node features propagated via GPR. Note that both the GPR weights and parameter set of the neural network are learned simultaneously in an end-to-end fashion (as indicated in red).

The learnt GPR weights of the GPR-GNN on real world datasets. Cora is homophilic while Texas is heterophilic (Here, H stands for the level of homophily defined in the main text, Equation (1)). An interesting trend may be observed: For the heterophilic case the weights alternate from positive to negative with dampening amplitudes. The shaded region corresponds to a 95% confidence interval.

Requirement:

pytorch
pytorch-geometric
numpy

Run experiment with Cora:

go to folder src

python train_model.py --RPMAX 2 \
        --net GPRGNN \
        --train_rate 0.025 \
        --val_rate 0.025 \
        --dataset cora 

Create cSBM dataset:

go to folder src

source create_cSBM_dataset.sh

The total size of cSBM datasets we used is over 1GB hence they are not included in this repository, but we do have a sample of the dataset in data/cSBM_demo. We reccommend you to regenerate these datasets using the format of above script, start its name with 'cSBM_data' and change the parameter to what we choose in section A.10 in Appendix of our paper.

Repreduce results in Table 2:

To reproduce the results in Table 2 of our paper you need to first perform hyperparameter tuning. For details of optimization of all models, please refer to section A.9 in Appendix of our paper. Here are the settings for GPRGNN and APPNP:

We choose random walk path lengths with K = 10 and use a 2-layer (MLP) with 64 hidden units for the NN component. For the GPR weights, we use different initializations including PPR with , or and the default random initialization in pytorch. Similarly, for APPNP we search the optimal . For other hyperparameter tuning, we optimize the learning rate over {0.002, 0.01, 0.05} and weight decay {0.0, 0.0005} for all models.

Here is a list of hyperparameters for your reference:

  • For cora and citeseer, choosing different alpha doesn't make big difference. So you can choose alpha = 0.1.
  • For pubmed, we choose lr = 0.05, alpha = 0.2, wd = 0.0005 and add dprate = 0.5 (dropout for GPR part).
  • For computers, we choose lr = 0.05, alpha = 0.5 and wd = 0.
  • For Photo, we choose lr = 0.01, alpha = 0.5 and wd = 0.
  • For chameleon, we choose lr = 0.05, alpha = 1, wd = 0 and dprate = 0.7.
  • For Actor, we choose lr = 0.01, alpha = 0.9, wd = 0.
  • For squirrel, we choose lr = 0.05, alpha = 0, wd = 0, dprate = 0.7.
  • For Texas, we choose lr = 0.05, alpha = 1, wd = 0.0005.
  • For Cornell, we choose lr = 0.05, alpha = 0.9, wd = 0.0005.

Citation

Please cite our paper if you use this code in your own work:

@inproceedings{
chien2021adaptive,
title={Adaptive Universal Generalized PageRank Graph Neural Network},
author={Eli Chien and Jianhao Peng and Pan Li and Olgica Milenkovic},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=n6jl7fLxrP}
}

Feel free to email us([email protected], [email protected]) if you have any further questions.

Owner
Jianhao
Jianhao
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Introduction This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI. In order to run this

Momin Haider 0 Jan 02, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Graph-total-spanning-trees - A Python script to get total number of Spanning Trees in a Graph

Total number of Spanning Trees in a Graph This is a python script just written f

Mehdi I. 0 Jul 18, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines

A Robust Unsupervised Ensemble of Feature-Based Explanations using Restricted Boltzmann Machines Understanding the results of deep neural networks is

Johan van den Heuvel 2 Dec 13, 2021
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022