PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Related tags

Deep LearningEMSRDPN
Overview

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning

This repository is for EMSRDPN introduced in the following paper

Bin-Cheng Yang and Gangshan Wu, "Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning", [arxiv]

It's an extension to a conference paper

Bin-Cheng Yang. 2019. Super Resolution Using Dual Path Connections. In Proceedings of the 27th ACM International Conference on Multimedia (MM ’19), October 21–25, 2019, Nice, France. ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3343031.3350878

The code is built on EDSR (PyTorch) and tested on Ubuntu 16.04 environment (Python3.7, PyTorch_1.1.0, CUDA9.0) with Titan X/Xp/V100 GPUs.

Contents

  1. Introduction
  2. Train
  3. Test
  4. Results
  5. Citation
  6. Acknowledgements

Introduction

Deep convolutional neural networks have been demonstrated to be effective for SISR in recent years. On the one hand, residual connections and dense connections have been used widely to ease forward information and backward gradient flows to boost performance. However, current methods use residual connections and dense connections separately in most network layers in a sub-optimal way. On the other hand, although various networks and methods have been designed to improve computation efficiency, save parameters, or utilize training data of multiple scale factors for each other to boost performance, it either do super-resolution in HR space to have a high computation cost or can not share parameters between models of different scale factors to save parameters and inference time. To tackle these challenges, we propose an efficient single image super-resolution network using dual path connections with multiple scale learning named as EMSRDPN. By introducing dual path connections inspired by Dual Path Networks into EMSRDPN, it uses residual connections and dense connections in an integrated way in most network layers. Dual path connections have the benefits of both reusing common features of residual connections and exploring new features of dense connections to learn a good representation for SISR. To utilize the feature correlation of multiple scale factors, EMSRDPN shares all network units in LR space between different scale factors to learn shared features and only uses a separate reconstruction unit for each scale factor, which can utilize training data of multiple scale factors to help each other to boost performance, meanwhile which can save parameters and support shared inference for multiple scale factors to improve efficiency. Experiments show EMSRDPN achieves better performance and comparable or even better parameter and inference efficiency over SOTA methods.

Train

Prepare training data

  1. Download DIV2K training data (800 training images for x2, x3, x4 and x8) from DIV2K dataset and Flickr2K training data (2650 training images) from Flickr2K dataset.

  2. Untar the download files.

  3. Using src/generate_LR_x8.m to generate x8 LR data for Flickr2K dataset, you need to modify 'folder' in src/generate_LR_x8.m to your directory to place Flickr2K dataset.

  4. Specify '--dir_data' in src/option.py to your directory to place DIV2K and Flickr2K datasets.

For more informaiton, please refer to EDSR(PyTorch).

Begin to train

  1. Cd to 'src', run the following scripts to train models.

    You can use scripts in file 'demo.sh' to train models for our paper.

    To train a fresh model using DIV2K dataset

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K

    To train a fresh model using Flickr2K dataset

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train Flickr2K

    To train a fresh model using both DIV2K and Flickr2K datasets to reproduce results in the paper, you need copy all the files in DIV2K_HR/ to Flickr2K_HR/, copy all the directories in DIV2K_LR_bicubic/ to Flickr2K_LR_bicubic/, then using the following script

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train Flickr2K

    To continue a unfinished model using DIV2K dataset, the processes for other datasets are similiar

    CUDA_VISIBLE_DEVICES=0,1 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348 --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 2 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --resume -1 --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --load EMSRDPN_BIx2348

Test

Quick start

  1. Download benchmark dataset from BaiduYun (access code: 20v5), place them in directory specified by '--dir_data' in src/option.py, untar it.

  2. Download EMSRDPN model for our paper from BaiduYun (access code: d2ov) and place them in 'experiment/'. Other multiple scale models can be downloaded from BaiduYun (access code: z5ey).

  3. Cd to 'src', run the following scripts to test downloaded EMSRDPN model.

    You can use scripts in file 'demo.sh' to produce results for our paper.

    To test a trained model

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5+Set14+B100+Urban100+Manga109 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results

    To test a trained model using self ensemble

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test+ --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5+Set14+B100+Urban100+Manga109 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results --self_ensemble

    To test a trained model using multiple scale infer

    CUDA_VISIBLE_DEVICES=0 python3.7 main.py --scale 2+3+4+8 --test_scale 2+3+4+8 --save EMSRDPN_BIx2348_test_multi_scale_infer --model EMSRDPN --epochs 5000 --batch_size 16 --patch_size 48 --n_GPUs 1 --n_threads 16 --SRDPNconfig A --ext sep --data_test Set5 --reset --decay 1000-2000-3000-4000-5000 --lr_patch_size --data_range 1-3450 --data_train DIV2K --pre_train ../experiment/EMSRDPN_BIx2348.pt --test_only --save_results --multi_scale_infer

Results

All the test results can be download from BaiduYun (access code: oawz).

Citation

If you find the code helpful in your resarch or work, please cite the following papers.

@InProceedings{Lim_2017_CVPR_Workshops,
  author = {Lim, Bee and Son, Sanghyun and Kim, Heewon and Nah, Seungjun and Lee, Kyoung Mu},
  title = {Enhanced Deep Residual Networks for Single Image Super-Resolution},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
  month = {July},
  year = {2017}
}

@inproceedings{2019Super,
  title={Super Resolution Using Dual Path Connections},
  author={ Yang, Bin Cheng },
  booktitle={the 27th ACM International Conference},
  year={2019},
}

@misc{yang2021efficient,
      title={Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning}, 
      author={Bin-Cheng Yang and Gangshan Wu},
      year={2021},
      eprint={2112.15386},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Acknowledgements

This code is built on EDSR (PyTorch). We thank the authors for sharing their code.

Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes.

OMNI A very lightweight monitoring system for Raspberry Pi clusters running Kubernetes. Why? When I finished my Kubernetes cluster using a few Raspber

Matias Godoy 148 Dec 29, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023