QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

Overview

QuakeLabeler

Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently build and visualize their training data set.

Introduction

QuakeLabeler is a Python package to customize, build and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing. Current functionalities include retrieving waveforms from data centers, customizing seismic samples, auto-building datasets, preprocessing and augmenting for labels, and visualizing data distribution. The code helps all levels of AI developers and seismology researchers for querying and building their own earthquake datasets and can be used through an interactive command-line interface with little knowledge of Python.

Installation, Usage, documentation and scripts are described at https://maihao14.github.io/QuakeLabeler/

Author: Hao Mai(Developer and Maintainer) & Pascal Audet (Developer and Maintainer)

Installation

Conda environment

We recommend creating a custom conda environment where QuakeLabeler can be installed along with its dependencies.

  • Create a environment called ql and install pygmt:
conda create -n ql python=3.8 pygmt -c conda-forge
  • Activate the newly created environment:
conda activate ql

Installing from source

Download or clone the repository:

git clone https://github.com/maihao14/QuakeLabeler.git
cd QuakeLabeler
pip install .

If you work in development mode, use the -e argument as pip install -e .

Running the scripts

Create a work folder where you will run the scripts that accompany QuakeLabeler. For example:

mkdir ~/WorkFolder
cd WorkFolder

Run QuakeLabeler. Input QuakeLabeler to macOS terminal or Windows consoles:

QuakeLabeler

Or input quakelabeler also works:

quakelabeler

A QuakeLabeler welcome interface will be loading:

(ql) [email protected] QuakeLabeler % QuakeLabeler
Welcome to QuakeLabeler----Fast AI Earthquake Dataset Deployment Tool!
QuakeLabeler provides multiple modes for different levels of Seismic AI researchers

[Beginner] mode -- well prepared case studies;
[Advanced] mode -- produce earthquake samples based on Customized parameters.

Contributing

All constructive contributions are welcome, e.g. bug reports, discussions or suggestions for new features. You can either open an issue on GitHub or make a pull request with your proposed changes. Before making a pull request, check if there is a corresponding issue opened and reference it in the pull request. If there isn't one, it is recommended to open one with your rationale for the change. New functionality or significant changes to the code that alter its behavior should come with corresponding tests and documentation. If you are new to contributing, you can open a work-in-progress pull request and have it iteratively reviewed. Suggestions for improvements (speed, accuracy, etc.) are also welcome.

You might also like...
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

The code for our paper
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

AI Flow is an open source framework that bridges big data and artificial intelligence.
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Comments
  • QuakeLabeler ModuleNotFoundError

    QuakeLabeler ModuleNotFoundError

    I followed the installation instructions to install the fascinating QuakeLabeler package But I encountered an error as follows Traceback (most recent call last): File "/home/panxiong/anaconda3/envs/ql/bin/QuakeLabeler", line 5, in <module> from quakelabeler.scripts.QuakeLabeler import main ModuleNotFoundError: No module named 'quakelabeler.scripts' Please give me a solution, thanks.

    opened by PANXIONG-CN 2
  • Error loading GMT shared library

    Error loading GMT shared library

    Hello,

    I was trying to use the QuakeLabeler package on some data and when I tried to run it I got the following error:

    pygmt.exceptions.GMTCLibNotFoundError: Error loading GMT shared library at 'libgmt.so'. libgmt.so: cannot open shared object file: No such file or directory

    I saw that there were some responses to a similar question in the past, but they all involved using conda, which I don't use at it interferes with other libraries I use.

    So far I tried using:

    pip install pygmt

    as well as GMT:

    sudo apt-get install gmt gmt-dcw gmt-gshhg sudo apt-get install ghostscript Unfortunately, it did not work.

    Any suggestions would be appreciated

    opened by sbrent88 1
  • the problem of QuakeLabeler used in the Ubuntu

    the problem of QuakeLabeler used in the Ubuntu

    After I create the python environment needed by QuakeLabeler and install it in my Ubuntu computer, there was the problem, "AttributeError: 'numpy.int64' object has no attribute 'split'" when I execute QuakeLabeler (quakelabeler) in the terminal.

    “”“ Traceback (most recent call last): File "/home/xxx/anaconda3/envs/slc/bin/QuakeLabeler", line 33, in sys.exit(load_entry_point('QuakeLabeler', 'console_scripts', 'QuakeLabeler')()) File "/home/xxx/anaconda3/envs/slc/bin/QuakeLabeler", line 25, in importlib_load_entry_point return next(matches).load() File "/home/xxx/anaconda3/envs/slc/lib/python3.8/importlib/metadata.py", line 77, in load module = import_module(match.group('module')) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 961, in _find_and_load_unlocked File "", line 219, in _call_with_frames_removed File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 961, in _find_and_load_unlocked File "", line 219, in _call_with_frames_removed File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 975, in _find_and_load_unlocked File "", line 671, in _load_unlocked File "", line 843, in exec_module File "", line 219, in _call_with_frames_removed File "/home/xxx/EQ_Detection/QuakeLabeler/quakelabeler/init.py", line 5, in from .classes import QuakeLabeler, Interactive, CustomSamples, QueryArrival, BuiltInCatalog, MergeMetadata, GlobalMaps File "/home/xxx/EQ_Detection/QuakeLabeler/quakelabeler/classes.py", line 35, in from obspy.core.utcdatetime import UTCDateTime File "/home/xxx/.local/lib/python3.8/site-packages/obspy/init.py", line 39, in from obspy.core.utcdatetime import UTCDateTime # NOQA File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/init.py", line 124, in from obspy.core.utcdatetime import UTCDateTime # NOQA File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/utcdatetime.py", line 27, in from obspy.core.util.deprecation_helpers import ObsPyDeprecationWarning File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/init.py", line 27, in from obspy.core.util.base import (ALL_MODULES, DEFAULT_MODULES, File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/base.py", line 36, in from obspy.core.util.misc import to_int_or_zero, buffered_load_entry_point File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/misc.py", line 214, in loadtxt(np.array([0]), ndmin=1) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/site-packages/numpy/lib/npyio.py", line 1086, in loadtxt ncols = len(usecols or split_line(first_line)) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/site-packages/numpy/lib/npyio.py", line 977, in split_line line = line.split(comment, 1)[0] AttributeError: 'numpy.int64' object has no attribute 'split' "”"

    opened by Damin1909 3
Owner
Hao Mai
Hao Mai
Real-Time High-Resolution Background Matting

Real-Time High-Resolution Background Matting Official repository for the paper Real-Time High-Resolution Background Matting. Our model requires captur

Peter Lin 6.1k Jan 03, 2023
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022