QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

Overview

QuakeLabeler

Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently build and visualize their training data set.

Introduction

QuakeLabeler is a Python package to customize, build and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing. Current functionalities include retrieving waveforms from data centers, customizing seismic samples, auto-building datasets, preprocessing and augmenting for labels, and visualizing data distribution. The code helps all levels of AI developers and seismology researchers for querying and building their own earthquake datasets and can be used through an interactive command-line interface with little knowledge of Python.

Installation, Usage, documentation and scripts are described at https://maihao14.github.io/QuakeLabeler/

Author: Hao Mai(Developer and Maintainer) & Pascal Audet (Developer and Maintainer)

Installation

Conda environment

We recommend creating a custom conda environment where QuakeLabeler can be installed along with its dependencies.

  • Create a environment called ql and install pygmt:
conda create -n ql python=3.8 pygmt -c conda-forge
  • Activate the newly created environment:
conda activate ql

Installing from source

Download or clone the repository:

git clone https://github.com/maihao14/QuakeLabeler.git
cd QuakeLabeler
pip install .

If you work in development mode, use the -e argument as pip install -e .

Running the scripts

Create a work folder where you will run the scripts that accompany QuakeLabeler. For example:

mkdir ~/WorkFolder
cd WorkFolder

Run QuakeLabeler. Input QuakeLabeler to macOS terminal or Windows consoles:

QuakeLabeler

Or input quakelabeler also works:

quakelabeler

A QuakeLabeler welcome interface will be loading:

(ql) [email protected] QuakeLabeler % QuakeLabeler
Welcome to QuakeLabeler----Fast AI Earthquake Dataset Deployment Tool!
QuakeLabeler provides multiple modes for different levels of Seismic AI researchers

[Beginner] mode -- well prepared case studies;
[Advanced] mode -- produce earthquake samples based on Customized parameters.

Contributing

All constructive contributions are welcome, e.g. bug reports, discussions or suggestions for new features. You can either open an issue on GitHub or make a pull request with your proposed changes. Before making a pull request, check if there is a corresponding issue opened and reference it in the pull request. If there isn't one, it is recommended to open one with your rationale for the change. New functionality or significant changes to the code that alter its behavior should come with corresponding tests and documentation. If you are new to contributing, you can open a work-in-progress pull request and have it iteratively reviewed. Suggestions for improvements (speed, accuracy, etc.) are also welcome.

You might also like...
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

The code for our paper
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser.
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

AI Flow is an open source framework that bridges big data and artificial intelligence.
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

In-Place Activated BatchNorm for Memory-Optimized Training of DNNs
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Comments
  • QuakeLabeler ModuleNotFoundError

    QuakeLabeler ModuleNotFoundError

    I followed the installation instructions to install the fascinating QuakeLabeler package But I encountered an error as follows Traceback (most recent call last): File "/home/panxiong/anaconda3/envs/ql/bin/QuakeLabeler", line 5, in <module> from quakelabeler.scripts.QuakeLabeler import main ModuleNotFoundError: No module named 'quakelabeler.scripts' Please give me a solution, thanks.

    opened by PANXIONG-CN 2
  • Error loading GMT shared library

    Error loading GMT shared library

    Hello,

    I was trying to use the QuakeLabeler package on some data and when I tried to run it I got the following error:

    pygmt.exceptions.GMTCLibNotFoundError: Error loading GMT shared library at 'libgmt.so'. libgmt.so: cannot open shared object file: No such file or directory

    I saw that there were some responses to a similar question in the past, but they all involved using conda, which I don't use at it interferes with other libraries I use.

    So far I tried using:

    pip install pygmt

    as well as GMT:

    sudo apt-get install gmt gmt-dcw gmt-gshhg sudo apt-get install ghostscript Unfortunately, it did not work.

    Any suggestions would be appreciated

    opened by sbrent88 1
  • the problem of QuakeLabeler used in the Ubuntu

    the problem of QuakeLabeler used in the Ubuntu

    After I create the python environment needed by QuakeLabeler and install it in my Ubuntu computer, there was the problem, "AttributeError: 'numpy.int64' object has no attribute 'split'" when I execute QuakeLabeler (quakelabeler) in the terminal.

    “”“ Traceback (most recent call last): File "/home/xxx/anaconda3/envs/slc/bin/QuakeLabeler", line 33, in sys.exit(load_entry_point('QuakeLabeler', 'console_scripts', 'QuakeLabeler')()) File "/home/xxx/anaconda3/envs/slc/bin/QuakeLabeler", line 25, in importlib_load_entry_point return next(matches).load() File "/home/xxx/anaconda3/envs/slc/lib/python3.8/importlib/metadata.py", line 77, in load module = import_module(match.group('module')) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 961, in _find_and_load_unlocked File "", line 219, in _call_with_frames_removed File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 961, in _find_and_load_unlocked File "", line 219, in _call_with_frames_removed File "", line 1014, in _gcd_import File "", line 991, in _find_and_load File "", line 975, in _find_and_load_unlocked File "", line 671, in _load_unlocked File "", line 843, in exec_module File "", line 219, in _call_with_frames_removed File "/home/xxx/EQ_Detection/QuakeLabeler/quakelabeler/init.py", line 5, in from .classes import QuakeLabeler, Interactive, CustomSamples, QueryArrival, BuiltInCatalog, MergeMetadata, GlobalMaps File "/home/xxx/EQ_Detection/QuakeLabeler/quakelabeler/classes.py", line 35, in from obspy.core.utcdatetime import UTCDateTime File "/home/xxx/.local/lib/python3.8/site-packages/obspy/init.py", line 39, in from obspy.core.utcdatetime import UTCDateTime # NOQA File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/init.py", line 124, in from obspy.core.utcdatetime import UTCDateTime # NOQA File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/utcdatetime.py", line 27, in from obspy.core.util.deprecation_helpers import ObsPyDeprecationWarning File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/init.py", line 27, in from obspy.core.util.base import (ALL_MODULES, DEFAULT_MODULES, File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/base.py", line 36, in from obspy.core.util.misc import to_int_or_zero, buffered_load_entry_point File "/home/xxx/.local/lib/python3.8/site-packages/obspy/core/util/misc.py", line 214, in loadtxt(np.array([0]), ndmin=1) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/site-packages/numpy/lib/npyio.py", line 1086, in loadtxt ncols = len(usecols or split_line(first_line)) File "/home/xxx/anaconda3/envs/slc/lib/python3.8/site-packages/numpy/lib/npyio.py", line 977, in split_line line = line.split(comment, 1)[0] AttributeError: 'numpy.int64' object has no attribute 'split' "”"

    opened by Damin1909 3
Owner
Hao Mai
Hao Mai
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023
This is the source code for the experiments related to the paper Unsupervised Audio Source Separation Using Differentiable Parametric Source Models

Unsupervised Audio Source Separation Using Differentiable Parametric Source Models This is the source code for the experiments related to the paper Un

30 Oct 19, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023