Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

Overview

CRF - Conditional Random Fields

A library for dense conditional random fields (CRFs).

This is the official accompanying code for the paper Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond published at NeurIPS 2021 by Đ.Khuê Lê-Huu and Karteek Alahari. Please cite this paper if you use any part of this code, using the following BibTeX entry:

@inproceedings{lehuu2021regularizedFW,
  title={Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond},
  author={L\^e-Huu, \DJ.Khu\^e and Alahari, Karteek},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Currently the code is messy and undocumented, and we apology for that. We will make an effort to fix this soon. To facilitate the maintenance, the code and pre-trained models for the semantic segmentation task will be available in a separate repository.

Installation

git clone https://github.com/netw0rkf10w/CRF.git
cd CRF
python setup.py install

Usage

After having installed the package, you can create a CRF layer as follows:

import CRF

params = CRF.FrankWolfeParams(scheme='fixed', # constant stepsize
            stepsize=1.0,
            regularizer='l2',
            lambda_=1.0, # regularization weight
            lambda_learnable=False,
            x0_weight=0.5, # useful for training, set to 0 if inference only
            x0_weight_learnable=False)

crf = CRF.DenseGaussianCRF(classes=21,
                alpha=160,
                beta=0.05,
                gamma=3.0,
                spatial_weight=1.0,
                bilateral_weight=1.0,
                compatibility=1.0,
                init='potts',
                solver='fw',
                iterations=5,
                params=params)

Detailed documentation on the available options will be added later.

Below is an example of how to use this layer in combination with a CNN. We can define for example the following simple CNN-CRF module:

import torch

class CNNCRF(torch.nn.Module):
    """
    Simple CNN-CRF model
    """
    def __init__(self, cnn, crf):
        super().__init__()
        self.cnn = cnn
        self.crf = crf

    def forward(self, x):
        """
        x is a batch of input images
        """
        logits = self.cnn(x)
        logits = self.crf(x, logits)
        return logits

# Create a CNN-CRF model from given `cnn` and `crf`
# This is a PyTorch module that can be used in a usual way
model = CNNCRF(cnn, crf)

Acknowledgements

The CUDA implementation of the permutohedral lattice is due to https://github.com/MiguelMonteiro/permutohedral_lattice. An initial version of our permutohedral layer was based on https://github.com/Fettpet/pytorch-crfasrnn.

Owner
Đ.Khuê Lê-Huu
Đ.Khuê Lê-Huu
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data

VISNOTATE: An Opensource tool for Gaze-based Annotation of WSI Data Introduction Requirements Installation and Setup Supported Hardware and Software R

SigmaLab 1 Jun 14, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
[PNAS2021] The neural architecture of language: Integrative modeling converges on predictive processing

The neural architecture of language: Integrative modeling converges on predictive processing Code accompanying the paper The neural architecture of la

Martin Schrimpf 36 Dec 01, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022