Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

Overview

CRF - Conditional Random Fields

A library for dense conditional random fields (CRFs).

This is the official accompanying code for the paper Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond published at NeurIPS 2021 by Đ.Khuê Lê-Huu and Karteek Alahari. Please cite this paper if you use any part of this code, using the following BibTeX entry:

@inproceedings{lehuu2021regularizedFW,
  title={Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond},
  author={L\^e-Huu, \DJ.Khu\^e and Alahari, Karteek},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Currently the code is messy and undocumented, and we apology for that. We will make an effort to fix this soon. To facilitate the maintenance, the code and pre-trained models for the semantic segmentation task will be available in a separate repository.

Installation

git clone https://github.com/netw0rkf10w/CRF.git
cd CRF
python setup.py install

Usage

After having installed the package, you can create a CRF layer as follows:

import CRF

params = CRF.FrankWolfeParams(scheme='fixed', # constant stepsize
            stepsize=1.0,
            regularizer='l2',
            lambda_=1.0, # regularization weight
            lambda_learnable=False,
            x0_weight=0.5, # useful for training, set to 0 if inference only
            x0_weight_learnable=False)

crf = CRF.DenseGaussianCRF(classes=21,
                alpha=160,
                beta=0.05,
                gamma=3.0,
                spatial_weight=1.0,
                bilateral_weight=1.0,
                compatibility=1.0,
                init='potts',
                solver='fw',
                iterations=5,
                params=params)

Detailed documentation on the available options will be added later.

Below is an example of how to use this layer in combination with a CNN. We can define for example the following simple CNN-CRF module:

import torch

class CNNCRF(torch.nn.Module):
    """
    Simple CNN-CRF model
    """
    def __init__(self, cnn, crf):
        super().__init__()
        self.cnn = cnn
        self.crf = crf

    def forward(self, x):
        """
        x is a batch of input images
        """
        logits = self.cnn(x)
        logits = self.crf(x, logits)
        return logits

# Create a CNN-CRF model from given `cnn` and `crf`
# This is a PyTorch module that can be used in a usual way
model = CNNCRF(cnn, crf)

Acknowledgements

The CUDA implementation of the permutohedral lattice is due to https://github.com/MiguelMonteiro/permutohedral_lattice. An initial version of our permutohedral layer was based on https://github.com/Fettpet/pytorch-crfasrnn.

Owner
Đ.Khuê Lê-Huu
Đ.Khuê Lê-Huu
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022