Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Related tags

Deep LearningPhySG
Overview

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Quick start

  • Create conda environment
conda env create -f environment.yml
conda activate PhySG
  • Download example data from google drive.

  • Optimize for geometry and material given a set of posed images and object segmentation masks

cd code
~~python training/exp_runner.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/train \
                              --expname kitty \
                              --nepoch 2000 --max_niter 200001 \
                              --gamma 1.0
  • Render novel views, relighting and mesh extraction, etc.
cd code
# use same lighting as training
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr
# plug in new lighting                              
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr \
                              --light_sg ./envmaps/envmap3_sg_fit/tmp_lgtSGs_100.npy

Tips: for viewing exr images, you can use tev hdr viewer.

Some important pointers

  • code/model/sg_render.py: core of the appearance modelling that evaluates rendering equation using spherical Gaussians.
    • code/model/sg_envmap_convention.png: coordinate system convention for the envmap.
  • code/model/sg_envmap_material.py: optimizable parameters for the material part.
  • code/model/implicit_differentiable_renderer.py: optimizable parameters for the geometry part; it also contains our foward rendering code.
  • code/training/idr_train.py: SGD optimization of unknown geometry and material.
  • code/evaluation/eval.py: novel view rendering, relighting, mesh extraction, etc.
  • code/envmaps/fit_envmap_with_sg.py: represent an envmap with mixture of spherical Gaussians. We provide three envmaps represented by spherical Gaussians optimized via this script in the 'code/envmaps' folder.

Prepare your own data

  • Organize the images and masks in the same way as the provided data.
  • As to camera parameters, we follow the same convention as NeRF++ to use OpenCV conventions.

Acknowledgements: this codebase borrows a lot from the awesome IDR work; we thank the authors for releasing their code.

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
PerfFuzz: Automatically Generate Pathological Inputs for C/C++ programs

PerfFuzz Performance problems in software can arise unexpectedly when programs are provided with inputs that exhibit pathological behavior. But how ca

Caroline Lemieux 125 Nov 18, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Semantic Segmentation of images using PixelLib with help of Pascalvoc dataset trained with Deeplabv3+ framework.

CARscan- Approach 1 - Segmentation of images by detecting contours. It failed because in images with elements along with cars were also getting detect

Padmanabha Banerjee 5 Jul 29, 2021
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022