Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Related tags

Deep LearningPhySG
Overview

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

Quick start

  • Create conda environment
conda env create -f environment.yml
conda activate PhySG
  • Download example data from google drive.

  • Optimize for geometry and material given a set of posed images and object segmentation masks

cd code
~~python training/exp_runner.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/train \
                              --expname kitty \
                              --nepoch 2000 --max_niter 200001 \
                              --gamma 1.0
  • Render novel views, relighting and mesh extraction, etc.
cd code
# use same lighting as training
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr
# plug in new lighting                              
python evaluation/eval.py --conf confs_sg/default.conf \
                              --data_split_dir ../example_data/kitty/test \
                              --expname kitty \
                              --gamma 1.0 --resolution 256 --save_exr \
                              --light_sg ./envmaps/envmap3_sg_fit/tmp_lgtSGs_100.npy

Tips: for viewing exr images, you can use tev hdr viewer.

Some important pointers

  • code/model/sg_render.py: core of the appearance modelling that evaluates rendering equation using spherical Gaussians.
    • code/model/sg_envmap_convention.png: coordinate system convention for the envmap.
  • code/model/sg_envmap_material.py: optimizable parameters for the material part.
  • code/model/implicit_differentiable_renderer.py: optimizable parameters for the geometry part; it also contains our foward rendering code.
  • code/training/idr_train.py: SGD optimization of unknown geometry and material.
  • code/evaluation/eval.py: novel view rendering, relighting, mesh extraction, etc.
  • code/envmaps/fit_envmap_with_sg.py: represent an envmap with mixture of spherical Gaussians. We provide three envmaps represented by spherical Gaussians optimized via this script in the 'code/envmaps' folder.

Prepare your own data

  • Organize the images and masks in the same way as the provided data.
  • As to camera parameters, we follow the same convention as NeRF++ to use OpenCV conventions.

Acknowledgements: this codebase borrows a lot from the awesome IDR work; we thank the authors for releasing their code.

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

Nicholas Monath 35 Nov 16, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
[CVPR 2021] Teachers Do More Than Teach: Compressing Image-to-Image Models (CAT)

CAT arXiv Pytorch implementation of our method for compressing image-to-image models. Teachers Do More Than Teach: Compressing Image-to-Image Models Q

Snap Research 160 Dec 09, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022