Implementation of character based convolutional neural network

Overview

Character Based CNN

MIT contributions welcome Twitter Stars

This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification.

The model architecture comes from this paper: https://arxiv.org/pdf/1509.01626.pdf

Network architecture

There are two variants: a large and a small. You can switch between the two by changing the configuration file.

This architecture has 6 convolutional layers:

Layer Large Feature Small Feature Kernel Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3

and 2 fully connected layers:

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the problem Depends on the problem

Video tutorial

If you're interested in how character CNN work as well as in the demo of this project you can check my youtube video tutorial.

Why you should care about character level CNNs

They have very nice properties:

  • They are quite powerful in text classification (see paper's benchmark) even though they don't have any notion of semantics
  • You don't need to apply any text preprocessing (tokenization, lemmatization, stemming ...) while using them
  • They handle misspelled words and OOV (out-of-vocabulary) tokens
  • They are faster to train compared to recurrent neural networks
  • They are lightweight since they don't require storing a large word embedding matrix. Hence, you can deploy them in production easily

Training a sentiment classifier on french customer reviews

I have tested this model on a set of french labeled customer reviews (of over 3 millions rows). I reported the metrics in TensorboardX.

I got the following results

F1 score Accuracy
train 0.965 0.9366
test 0.945 0.915

Training metrics

Dependencies

  • numpy
  • pandas
  • sklearn
  • PyTorch 0.4.1
  • tensorboardX
  • Tensorflow (to be able to run TensorboardX)

Structure of the code

At the root of the project, you will have:

  • train.py: used for training a model
  • predict.py: used for the testing and inference
  • config.json: a configuration file for storing model parameters (number of filters, neurons)
  • src: a folder that contains:
    • cnn_model.py: the actual CNN model (model initialization and forward method)
    • data_loader.py: the script responsible of passing the data to the training after processing it
    • utils.py: a set of utility functions for text preprocessing (url/hashtag/user_mention removal)

How to use the code

Training

The code currently works only on binary labels (0/1)

Launch train.py with the following arguments:

  • data_path: path of the data. Data should be in csv format with at least a column for text and a column for the label
  • validation_split: the ratio of validation data. default to 0.2
  • label_column: column name of the labels
  • text_column: column name of the texts
  • max_rows: the maximum number of rows to load from the dataset. (I mainly use this for testing to go faster)
  • chunksize: size of the chunks when loading the data using pandas. default to 500000
  • encoding: default to utf-8
  • steps: text preprocessing steps to include on the text like hashtag or url removal
  • group_labels: whether or not to group labels. Default to None.
  • use_sampler: whether or not to use a weighted sampler to overcome class imbalance
  • alphabet: default to abcdefghijklmnopqrstuvwxyz0123456789,;.!?:'"/\|_@#$%^&*~`+-=<>()[]{} (normally you should not modify it)
  • number_of_characters: default 70
  • extra_characters: additional characters that you'd add to the alphabet. For example uppercase letters or accented characters
  • max_length: the maximum length to fix for all the documents. default to 150 but should be adapted to your data
  • epochs: number of epochs
  • batch_size: batch size, default to 128.
  • optimizer: adam or sgd, default to sgd
  • learning_rate: default to 0.01
  • class_weights: whether or not to use class weights in the cross entropy loss
  • focal_loss: whether or not to use the focal loss
  • gamma: gamma parameter of the focal loss. default to 2
  • alpha: alpha parameter of the focal loss. default to 0.25
  • schedule: number of epochs by which the learning rate decreases by half (learning rate scheduling works only for sgd), default to 3. set it to 0 to disable it
  • patience: maximum number of epochs to wait without improvement of the validation loss, default to 3
  • early_stopping: to choose whether or not to early stop the training. default to 0. set to 1 to enable it.
  • checkpoint: to choose to save the model on disk or not. default to 1, set to 0 to disable model checkpoint
  • workers: number of workers in PyTorch DataLoader, default to 1
  • log_path: path of tensorboard log file
  • output: path of the folder where models are saved
  • model_name: prefix name of saved models

Example usage:

python train.py --data_path=/data/tweets.csv --max_rows=200000

Plotting results to TensorboardX

Run this command at the root of the project:

tensorboard --logdir=./logs/ --port=6006

Then go to: http://localhost:6006 (or whatever host you're using)

Prediction

Launch predict.py with the following arguments:

  • model: path of the pre-trained model
  • text: input text
  • steps: list of preprocessing steps, default to lower
  • alphabet: default to 'abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:'"\/|_@#$%^&*~`+-=<>()[]{}\n'
  • number_of_characters: default to 70
  • extra_characters: additional characters that you'd add to the alphabet. For example uppercase letters or accented characters
  • max_length: the maximum length to fix for all the documents. default to 150 but should be adapted to your data

Example usage:

python predict.py ./models/pretrained_model.pth --text="I love pizza !" --max_length=150

Download pretrained models

  • Sentiment analysis model on French customer reviews (3M documents): download link

    When using it:

    • set max_length to 300
    • use extra_characters="éàèùâêîôûçëïü" (accented letters)

Contributions - PR are welcome:

Here's a non-exhaustive list of potential future features to add:

  • Adapt the loss for multi-class classification
  • Log training and validation metrics for each epoch to a text file
  • Provide notebook tutorials

License

This project is licensed under the MIT License

Comments
  • Model trained on GPU is unable to predict on CPU

    Model trained on GPU is unable to predict on CPU

    I used some GPUs on the server to speed up training. But after downloading the trained model file to my PC (no GPU equipped) and run the predict.py script. It gives an error message related to cuda_is_available() , seems that the model trained on a GPU cannot predict on only-CPU machines? Is this an expected behavior? If not, any help will be appreciated! Thanks a lot!

    Error Message:

    (ml) C:\Users\lzy71\MyProject\character-based-cnn>python predict.py --model=./model/testmodel.pth --text="I love the pizza" > msg.txt
    C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.container.ModuleList' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes.
      warnings.warn(msg, SourceChangeWarning)
    C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.container.Sequential' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes.
      warnings.warn(msg, SourceChangeWarning)
    C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py:454: SourceChangeWarning: source code of class 'torch.nn.modules.conv.Conv1d' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes.
      warnings.warn(msg, SourceChangeWarning)
    Traceback (most recent call last):
      File "predict.py", line 39, in <module>
        prediction = predict(args)
      File "predict.py", line 10, in predict
        model = torch.load(args.model)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 387, in load
        return _load(f, map_location, pickle_module, **pickle_load_args)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 574, in _load
        result = unpickler.load()
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 537, in persistent_load
        deserialized_objects[root_key] = restore_location(obj, location)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 119, in default_restore_location
        result = fn(storage, location)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 95, in _cuda_deserialize
        device = validate_cuda_device(location)
      File "C:\Users\lzy71\Anaconda3\envs\ml\lib\site-packages\torch\serialization.py", line 79, in validate_cuda_device
        raise RuntimeError('Attempting to deserialize object on a CUDA '
    RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU.
    
    opened by desmondlzy 2
  • AttributeError: 'tuple' object has no attribute 'size'

    AttributeError: 'tuple' object has no attribute 'size'

    train is always falling even with such kind of file: """ SentimentText;Sentiment aaa;1 bbb;2 ccc;3 """ Params of running -- just data_path Packages installed: numpy==1.16.1 pandas==0.24.1 Pillow==5.4.1 protobuf==3.6.1 python-dateutil==2.8.0 pytz==2018.9 scikit-learn==0.20.2 scipy==1.2.1 six==1.12.0 sklearn==0.0 tensorboardX==1.6 torch==1.0.1.post2 torchvision==0.2.1 tqdm==4.31.1

    opened by 40min 2
  • Predict error

    Predict error

    Raw output on console.

    python3 predict.py --model=./models/model__epoch_9_maxlen_150_lr_0.00125_loss_0.6931_acc_0.5005_f1_0.4944.pth --text="thisisatest_______" --alphabet=abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_ Traceback (most recent call last): File "/Users/ttran/Desktop/development/python/character-based-cnn/predict.py", line 48, in <module> prediction = predict(args) File "/Users/ttran/Desktop/development/python/character-based-cnn/predict.py", line 11, in predict model = CharacterLevelCNN(args, args.number_of_classes) File "/Users/ttran/Desktop/development/python/character-based-cnn/src/model.py", line 12, in __init__ self.dropout_input = nn.Dropout2d(args.dropout_input) AttributeError: 'Namespace' object has no attribute 'dropout_input'

    What is --number_of_classes argument? I don't have that set in the run command.

    opened by thyngontran 1
  • Data types of columns in the data (CSV)

    Data types of columns in the data (CSV)

    Can you describe how to encode the labels? I get only 1 class label, see output below. They are set as integers (either 0 or 1)

    See output below when I train my model.

    data loaded successfully with 9826 rows and 1 labels Distribution of the classes Counter({0: 9826})

    opened by rkmatousek 1
  • RuntimeError: expected scalar type Long but found Double

    RuntimeError: expected scalar type Long but found Double

    I'm using a dataset I scraped but same structure comments with rating 0-10, using the same commands as provided except group_labels=0

    Traceback (most recent call last):
      File "train.py", line 415, in <module>
        run(args)
      File "train.py", line 297, in run
        training_loss, training_accuracy, train_f1 = train(model,
      File "train.py", line 50, in train
        loss = criterion(predictions, labels)
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 532, in __call__
        result = self.forward(*input, **kwargs)
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\loss.py", line 915, in forward
        return F.cross_entropy(input, target, weight=self.weight,
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\functional.py", line 2021, in cross_entropy
        return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, reduction)
      File "C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\functional.py", line 1838, in nll_loss
        ret = torch._C._nn.nll_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
    RuntimeError: expected scalar type Long but found Double
    
    opened by RyanMills19 0
  • Data loader class issues while mapping

    Data loader class issues while mapping

    I am using my dataset having three labels 0,1,2. While loading the dataset in data_loader class it generates key error. I think the issue is of mapping please guide.

    Traceback (most recent call last):
      File "train.py", line 415, in <module>
        run(args)
      File "train.py", line 219, in run
        texts, labels, number_of_classes, sample_weights = load_data(args)
      File "/content/character-based-cnn/src/data_loader.py", line 55, in load_data
        map(lambda l: {1: 0, 2: 0, 4: 1, 5: 1, 7: 2, 8: 2}[l], labels))
      File "/content/character-based-cnn/src/data_loader.py", line 55, in <lambda>
        map(lambda l: {1: 0, 2: 0, 4: 1, 5: 1, 7: 2, 8: 2}[l], labels))
    KeyError: '1'
    
    opened by bilalbaloch1 1
  • ImportError: No module named cnn_model

    ImportError: No module named cnn_model

    Ubuntu 18.04.3 LTS Python 3.6.9

    Command: python3 predict.py --model "./models/pretrained_model.pth" --text "I love pizza !" --max_length 150

    Output: Traceback (most recent call last): File "predict.py", line 47, in prediction = predict(args) File "predict.py", line 14, in predict state = torch.load(args.model) File "/home/reda/.local/lib/python3.6/site-packages/torch/serialization.py", line 426, in load return _load(f, map_location, pickle_module, **pickle_load_args) File "/home/reda/.local/lib/python3.6/site-packages/torch/serialization.py", line 613, in _load result = unpickler.load() ModuleNotFoundError: No module named 'src.cnn_model'

    opened by redaaa99 0
Releases(model_en_tp_amazon)
Owner
Ahmed BESBES
Data Scientist, Deep learning practitioner, Blogger, Obsessed with neat design and automation
Ahmed BESBES
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI 2022)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022