codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Related tags

Deep LearningSPUDRFs
Overview

Self-paced Deep Regression Forests with Consideration on Ranking Fairness

This is official codes for paper Self-paced Deep Regression Forests with Consideration on Ranking Fairness. In this paper, we proposes a new self-paced paradigm for deep discriminative model, which distinguishes noisy and underrepresented examples according to the output likelihood and entropy associated with each example, and we tackle the fundamental ranking problem in SPL from a new perspective: Fairness.

Why should we consider the fairness of self-paced learning?

We find that SPL focuses on easy samples at early pace and the underrepresented ones are always ranked at the end of the whole sequence. This phenomenon demonstrates the SPL has a potential sorting fairness issue. However, SPUDRFs considers sample uncertainty when ranking samples, thus making underrepresented samples be selected at early pace.

Tasks and Performances

Age Estimation on MORPH II Dataset

The gradual learning process of SP-DRFs and SPUDRFs. Left: The typical worst cases at each iteration. Right: The MAEs of SP-DRFs and SPUDRFs at each pace descend gradually. Compared with SP-DRFs, the SPUDRFs show its superiority of taking predictive uncertainty into consideration.

Gaze Estimation on MPII Dataset

The similar phenomena can be observed on MPII dataset.

Head Pose Estimation on BIWI Dataset

For visualization, we plot the leaf node distribution of SP-DRFs and SPUDRFs in gradual learning process. The means of leaf nodes of SP-DRFs gather in a small range, incurring seriously biased solutions, while that of SPUDRFs distribute widely, leading to much better MAE performance.

Fairness Evaluation

We use FRIA, proposed in our paper, as fairness metric. FAIR is defined as following form.

The following table shows the FAIR of different methods on different datasets. SPUDRFs achieve the best performance on all datasets.
Dataset MORPH FGNET BIWI BU-3DFE MPII
DRFs 0.46 0.42 0.46 0.740 0.67
SP-DRFs 0.44 0.37 0.43 0.72 0.67
SPUDRFs 0.48 0.42 0.70 0.76 0.69

How to train your SPUDRFs

Pre-trained models and Dataset

We use pre-trained models for our training. You can download VGGFace from here and VGG IMDB-WIKI from here. The datasets used in our experiment are in following table. We use MTCNN to detect and align face. For BIWI, we use depth images. For MPII, we use normalized left eye and right eye patch as input, and details about normalization can be found here.

Task Dataset
Age Estimation MOPRH and FG-NET
Head Estimation BIWI and BU-3DFE
Gaze Estimation MPII

Environment setup

All codes are based on Pytorch, before you run this repo, please make sure that you have a pytorch envirment. You can install them using following command.

pip install -r requirements.txt

Train SPUDRFs

Code descritption:

Here is the description of the main codes.

step.py:         train SPUDRFs from scratch  
train.py:        complete one pace training for a given train set
predict.py:      complete a test for a given test set
picksamples.py:  select samples for next pace   

Train your SPUDRFs from scratch:

You should download this repo, and prepare your datasets and pre-trained models, then just run following command to train your SPUDRFs from scratch.

  • Clone this repo:
git clone https://github.com/learninginvision/SPUDRFs.git  
cd SPUDFRs  
  • Set config.yml
lr: 0.00002
max_step: 80000
batchsize: 32

total_pace: 10
pace_percent: [0.5, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0556, 0.0552]
alpha: 2
threshold: -3.0
ent_pick_per: 0
capped: False
  • Train from scratch
python step.py

Acknowledgments

This code is inspired by caffe-DRFs.

Owner
Learning in Vision
Understanding and learning in computer vision.
Learning in Vision
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022