Object-aware Contrastive Learning for Debiased Scene Representation

Overview

Object-aware Contrastive Learning

Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo Mo*, Hyunwoo Kang*, Kihyuk Sohn, Chun-Liang Li, and Jinwoo Shin.

Installation

Install required libraries.

pip install -r requirements.txt

Download datasets in /data (e.g., /data/COCO).

Train models

Logs will be saved in logs/{dataset}_{model}_{arch}_b{global_batch_size} directory, where global_batch_size = num_nodes * gpus * batch_size (default batch size = 64 * 4 = 256).

Step 1. Train vanilla models

Train vanilla models (change dataset and ft_datasets as cub or in9).

python pretrain.py --dataset coco --model moco --arch resnet18\
    --ft_datasets coco --batch_size 64 --max_epochs 800

Step 2. Pre-compute CAM masks

Pre-compute bounding boxes for object-aware random crop.

python inference.py --mode save_box --model moco --arch resnet18\
    --ckpt_name coco_moco_r18_b256 --dataset coco\
    --expand_res 2 --cam_iters 10 --apply_crf\
    --save_path data/boxes/coco_cam-r18.txt

Pre-compute masks for background mixup.

python inference.py --mode save_mask --model moco --arch resnet18\
    --ckpt_name in9_moco_r18_256 --dataset in9\
    --expand_res 1 --cam_iters 1\
    --save_path data/masks/in9_cam-r18

Step 3. Re-train debiased models

Train contextual debiased model with object-aware random crop.

python pretrain.py --dataset coco-box-cam-r18 --model moco --arch resnet18\
     --ft_datasets coco --batch_size 64 --max_epochs 800

Train background debiased model with background mixup.

python pretrain.py --dataset in9-mask-cam-r18 --model moco_bgmix --arch resnet18\
    --ft_datasets in9 --batch_size 64 --max_epochs 800

Evaluate models

Linear evaluation

python inference.py --mode lineval --model moco --arch resnet18\
    --ckpt_name coco_moco_r18_b256 --dataset coco

Object localization

python inference.py --mode seg --model moco --arch resnet18\
    --ckpt_name cub200_moco_r18_b256 --dataset cub200\
    --expand_res 2 --cam_iters 10 --apply_crf

Detection & Segmentation (fine-tuning)

mv detection
python convert-pretrain-to-detectron2.py coco_moco_r50.pth coco_moco_r50.pkl
python train_net.py --config-file configs/coco_R_50_C4_2x_moco.yaml --num-gpus 8\
    MODEL.WEIGHTS weights/coco_moco_r18.pkl
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022