PyTorch implementation of SwAV (Swapping Assignments between Views)

Related tags

Deep Learningswav
Overview

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

This code provides a PyTorch implementation and pretrained models for SwAV (Swapping Assignments between Views), as described in the paper Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.

SwAV Illustration

SwAV is an efficient and simple method for pre-training convnets without using annotations. Similarly to contrastive approaches, SwAV learns representations by comparing transformations of an image, but unlike contrastive methods, it does not require to compute feature pairwise comparisons. It makes our framework more efficient since it does not require a large memory bank or an auxiliary momentum network. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or “views”) of the same image, instead of comparing features directly. Simply put, we use a “swapped” prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data.

Model Zoo

We release several models pre-trained with SwAV with the hope that other researchers might also benefit by replacing the ImageNet supervised network with SwAV backbone. To load our best SwAV pre-trained ResNet-50 model, simply do:

import torch
model = torch.hub.load('facebookresearch/swav:main', 'resnet50')

We provide several baseline SwAV pre-trained models with ResNet-50 architecture in torchvision format. We also provide models pre-trained with DeepCluster-v2 and SeLa-v2 obtained by applying improvements from the self-supervised community to DeepCluster and SeLa (see details in the appendix of our paper).

method epochs batch-size multi-crop ImageNet top-1 acc. url args
SwAV 800 4096 2x224 + 6x96 75.3 model script
SwAV 400 4096 2x224 + 6x96 74.6 model script
SwAV 200 4096 2x224 + 6x96 73.9 model script
SwAV 100 4096 2x224 + 6x96 72.1 model script
SwAV 200 256 2x224 + 6x96 72.7 model script
SwAV 400 256 2x224 + 6x96 74.3 model script
SwAV 400 4096 2x224 70.1 model script
DeepCluster-v2 800 4096 2x224 + 6x96 75.2 model script
DeepCluster-v2 400 4096 2x160 + 4x96 74.3 model script
DeepCluster-v2 400 4096 2x224 70.2 model script
SeLa-v2 400 4096 2x160 + 4x96 71.8 model -
SeLa-v2 400 4096 2x224 67.2 model -

Larger architectures

We provide SwAV models with ResNet-50 networks where we multiply the width by a factor ×2, ×4, and ×5. To load the corresponding backbone you can use:

import torch
rn50w2 = torch.hub.load('facebookresearch/swav:main', 'resnet50w2')
rn50w4 = torch.hub.load('facebookresearch/swav:main', 'resnet50w4')
rn50w5 = torch.hub.load('facebookresearch/swav:main', 'resnet50w5')
network parameters epochs ImageNet top-1 acc. url args
RN50-w2 94M 400 77.3 model script
RN50-w4 375M 400 77.9 model script
RN50-w5 586M 400 78.5 model -

Running times

We provide the running times for some of our runs:

method batch-size multi-crop scripts time per epoch
SwAV 4096 2x224 + 6x96 * * * * 3min40s
SwAV 256 2x224 + 6x96 * * 52min10s
DeepCluster-v2 4096 2x160 + 4x96 * 3min13s

Running SwAV unsupervised training

Requirements

Singlenode training

SwAV is very simple to implement and experiment with. Our implementation consists in a main_swav.py file from which are imported the dataset definition src/multicropdataset.py, the model architecture src/resnet50.py and some miscellaneous training utilities src/utils.py.

For example, to train SwAV baseline on a single node with 8 gpus for 400 epochs, run:

python -m torch.distributed.launch --nproc_per_node=8 main_swav.py \
--data_path /path/to/imagenet/train \
--epochs 400 \
--base_lr 0.6 \
--final_lr 0.0006 \
--warmup_epochs 0 \
--batch_size 32 \
--size_crops 224 96 \
--nmb_crops 2 6 \
--min_scale_crops 0.14 0.05 \
--max_scale_crops 1. 0.14 \
--use_fp16 true \
--freeze_prototypes_niters 5005 \
--queue_length 3840 \
--epoch_queue_starts 15

Multinode training

Distributed training is available via Slurm. We provide several SBATCH scripts to reproduce our SwAV models. For example, to train SwAV on 8 nodes and 64 GPUs with a batch size of 4096 for 800 epochs run:

sbatch ./scripts/swav_800ep_pretrain.sh

Note that you might need to remove the copyright header from the sbatch file to launch it.

Set up dist_url parameter: We refer the user to pytorch distributed documentation (env or file or tcp) for setting the distributed initialization method (parameter dist_url) correctly. In the provided sbatch files, we use the tcp init method (see * for example).

Evaluating models

Evaluate models: Linear classification on ImageNet

To train a supervised linear classifier on frozen features/weights on a single node with 8 gpus, run:

python -m torch.distributed.launch --nproc_per_node=8 eval_linear.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar

The resulting linear classifier can be downloaded here.

Evaluate models: Semi-supervised learning on ImageNet

To reproduce our results and fine-tune a network with 1% or 10% of ImageNet labels on a single node with 8 gpus, run:

  • 10% labels
python -m torch.distributed.launch --nproc_per_node=8 eval_semisup.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar \
--labels_perc "10" \
--lr 0.01 \
--lr_last_layer 0.2
  • 1% labels
python -m torch.distributed.launch --nproc_per_node=8 eval_semisup.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar \
--labels_perc "1" \
--lr 0.02 \
--lr_last_layer 5

Evaluate models: Transferring to Detection with DETR

DETR is a recent object detection framework that reaches competitive performance with Faster R-CNN while being conceptually simpler and trainable end-to-end. We evaluate our SwAV ResNet-50 backbone on object detection on COCO dataset using DETR framework with full fine-tuning. Here are the instructions for reproducing our experiments:

  1. Install detr and prepare COCO dataset following these instructions.

  2. Apply the changes highlighted in this gist to detr backbone file in order to load SwAV backbone instead of ImageNet supervised weights.

  3. Launch training from detr repository with run_with_submitit.py.

python run_with_submitit.py --batch_size 4 --nodes 2 --lr_backbone 5e-5

Common Issues

For help or issues using SwAV, please submit a GitHub issue.

The loss does not decrease and is stuck at ln(nmb_prototypes) (8.006 for 3000 prototypes).

It sometimes happens that the system collapses at the beginning and does not manage to converge. We have found the following empirical workarounds to improve convergence and avoid collapsing at the beginning:

  • use a lower epsilon value (--epsilon 0.03 instead of the default 0.05)
  • carefully tune the hyper-parameters
  • freeze the prototypes during first iterations (freeze_prototypes_niters argument)
  • switch to hard assignment
  • remove batch-normalization layer from the projection head
  • reduce the difficulty of the problem (less crops or softer data augmentation)

We now analyze the collapsing problem: it happens when all examples are mapped to the same unique representation. In other words, the convnet always has the same output regardless of its input, it is a constant function. All examples gets the same cluster assignment because they are identical, and the only valid assignment that satisfy the equipartition constraint in this case is the uniform assignment (1/K where K is the number of prototypes). In turn, this uniform assignment is trivial to predict since it is the same for all examples. Reducing epsilon parameter (see Eq(3) of our paper) encourages the assignments Q to be sharper (i.e. less uniform), which strongly helps avoiding collapse. However, using a too low value for epsilon may lead to numerical instability.

Training gets unstable when using the queue.

The queue is composed of feature representations from the previous batches. These lines discard the oldest feature representations from the queue and save the newest one (i.e. from the current batch) through a round-robin mechanism. This way, the assignment problem is performed on more samples: without the queue we assign B examples to num_prototypes clusters where B is the total batch size while with the queue we assign (B + queue_length) examples to num_prototypes clusters. This is especially useful when working with small batches because it improves the precision of the assignment.

If you start using the queue too early or if you use a too large queue, this can considerably disturb training: this is because the queue members are too inconsistent. After introducing the queue the loss should be lower than what it was without the queue. On the following loss curve (30 first epochs of this script) we introduced the queue at epoch 15. We observe that it made the loss go more down.

SwAV training loss batch_size=256 during the first 30 epochs

If when introducing the queue, the loss goes up and does not decrease afterwards you should stop your training and change the queue parameters. We recommend (i) using a smaller queue, (ii) starting the queue later in training.

License

See the LICENSE file for more details.

See also

PyTorch Lightning Bolts: Implementation by the Lightning team.

SwAV-TF: A TensorFlow re-implementation.

Citation

If you find this repository useful in your research, please cite:

@article{caron2020unsupervised,
  title={Unsupervised Learning of Visual Features by Contrasting Cluster Assignments},
  author={Caron, Mathilde and Misra, Ishan and Mairal, Julien and Goyal, Priya and Bojanowski, Piotr and Joulin, Armand},
  booktitle={Proceedings of Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}
Owner
Meta Research
Meta Research
Code for the paper "Multi-task problems are not multi-objective"

Multi-Task problems are not multi-objective This is the code for the paper "Multi-Task problems are not multi-objective" in which we show that the com

Michael Ruchte 5 Aug 19, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022