PyTorch implementation of SwAV (Swapping Assignments between Views)

Related tags

Deep Learningswav
Overview

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments

This code provides a PyTorch implementation and pretrained models for SwAV (Swapping Assignments between Views), as described in the paper Unsupervised Learning of Visual Features by Contrasting Cluster Assignments.

SwAV Illustration

SwAV is an efficient and simple method for pre-training convnets without using annotations. Similarly to contrastive approaches, SwAV learns representations by comparing transformations of an image, but unlike contrastive methods, it does not require to compute feature pairwise comparisons. It makes our framework more efficient since it does not require a large memory bank or an auxiliary momentum network. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or “views”) of the same image, instead of comparing features directly. Simply put, we use a “swapped” prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data.

Model Zoo

We release several models pre-trained with SwAV with the hope that other researchers might also benefit by replacing the ImageNet supervised network with SwAV backbone. To load our best SwAV pre-trained ResNet-50 model, simply do:

import torch
model = torch.hub.load('facebookresearch/swav:main', 'resnet50')

We provide several baseline SwAV pre-trained models with ResNet-50 architecture in torchvision format. We also provide models pre-trained with DeepCluster-v2 and SeLa-v2 obtained by applying improvements from the self-supervised community to DeepCluster and SeLa (see details in the appendix of our paper).

method epochs batch-size multi-crop ImageNet top-1 acc. url args
SwAV 800 4096 2x224 + 6x96 75.3 model script
SwAV 400 4096 2x224 + 6x96 74.6 model script
SwAV 200 4096 2x224 + 6x96 73.9 model script
SwAV 100 4096 2x224 + 6x96 72.1 model script
SwAV 200 256 2x224 + 6x96 72.7 model script
SwAV 400 256 2x224 + 6x96 74.3 model script
SwAV 400 4096 2x224 70.1 model script
DeepCluster-v2 800 4096 2x224 + 6x96 75.2 model script
DeepCluster-v2 400 4096 2x160 + 4x96 74.3 model script
DeepCluster-v2 400 4096 2x224 70.2 model script
SeLa-v2 400 4096 2x160 + 4x96 71.8 model -
SeLa-v2 400 4096 2x224 67.2 model -

Larger architectures

We provide SwAV models with ResNet-50 networks where we multiply the width by a factor ×2, ×4, and ×5. To load the corresponding backbone you can use:

import torch
rn50w2 = torch.hub.load('facebookresearch/swav:main', 'resnet50w2')
rn50w4 = torch.hub.load('facebookresearch/swav:main', 'resnet50w4')
rn50w5 = torch.hub.load('facebookresearch/swav:main', 'resnet50w5')
network parameters epochs ImageNet top-1 acc. url args
RN50-w2 94M 400 77.3 model script
RN50-w4 375M 400 77.9 model script
RN50-w5 586M 400 78.5 model -

Running times

We provide the running times for some of our runs:

method batch-size multi-crop scripts time per epoch
SwAV 4096 2x224 + 6x96 * * * * 3min40s
SwAV 256 2x224 + 6x96 * * 52min10s
DeepCluster-v2 4096 2x160 + 4x96 * 3min13s

Running SwAV unsupervised training

Requirements

Singlenode training

SwAV is very simple to implement and experiment with. Our implementation consists in a main_swav.py file from which are imported the dataset definition src/multicropdataset.py, the model architecture src/resnet50.py and some miscellaneous training utilities src/utils.py.

For example, to train SwAV baseline on a single node with 8 gpus for 400 epochs, run:

python -m torch.distributed.launch --nproc_per_node=8 main_swav.py \
--data_path /path/to/imagenet/train \
--epochs 400 \
--base_lr 0.6 \
--final_lr 0.0006 \
--warmup_epochs 0 \
--batch_size 32 \
--size_crops 224 96 \
--nmb_crops 2 6 \
--min_scale_crops 0.14 0.05 \
--max_scale_crops 1. 0.14 \
--use_fp16 true \
--freeze_prototypes_niters 5005 \
--queue_length 3840 \
--epoch_queue_starts 15

Multinode training

Distributed training is available via Slurm. We provide several SBATCH scripts to reproduce our SwAV models. For example, to train SwAV on 8 nodes and 64 GPUs with a batch size of 4096 for 800 epochs run:

sbatch ./scripts/swav_800ep_pretrain.sh

Note that you might need to remove the copyright header from the sbatch file to launch it.

Set up dist_url parameter: We refer the user to pytorch distributed documentation (env or file or tcp) for setting the distributed initialization method (parameter dist_url) correctly. In the provided sbatch files, we use the tcp init method (see * for example).

Evaluating models

Evaluate models: Linear classification on ImageNet

To train a supervised linear classifier on frozen features/weights on a single node with 8 gpus, run:

python -m torch.distributed.launch --nproc_per_node=8 eval_linear.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar

The resulting linear classifier can be downloaded here.

Evaluate models: Semi-supervised learning on ImageNet

To reproduce our results and fine-tune a network with 1% or 10% of ImageNet labels on a single node with 8 gpus, run:

  • 10% labels
python -m torch.distributed.launch --nproc_per_node=8 eval_semisup.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar \
--labels_perc "10" \
--lr 0.01 \
--lr_last_layer 0.2
  • 1% labels
python -m torch.distributed.launch --nproc_per_node=8 eval_semisup.py \
--data_path /path/to/imagenet \
--pretrained /path/to/checkpoints/swav_800ep_pretrain.pth.tar \
--labels_perc "1" \
--lr 0.02 \
--lr_last_layer 5

Evaluate models: Transferring to Detection with DETR

DETR is a recent object detection framework that reaches competitive performance with Faster R-CNN while being conceptually simpler and trainable end-to-end. We evaluate our SwAV ResNet-50 backbone on object detection on COCO dataset using DETR framework with full fine-tuning. Here are the instructions for reproducing our experiments:

  1. Install detr and prepare COCO dataset following these instructions.

  2. Apply the changes highlighted in this gist to detr backbone file in order to load SwAV backbone instead of ImageNet supervised weights.

  3. Launch training from detr repository with run_with_submitit.py.

python run_with_submitit.py --batch_size 4 --nodes 2 --lr_backbone 5e-5

Common Issues

For help or issues using SwAV, please submit a GitHub issue.

The loss does not decrease and is stuck at ln(nmb_prototypes) (8.006 for 3000 prototypes).

It sometimes happens that the system collapses at the beginning and does not manage to converge. We have found the following empirical workarounds to improve convergence and avoid collapsing at the beginning:

  • use a lower epsilon value (--epsilon 0.03 instead of the default 0.05)
  • carefully tune the hyper-parameters
  • freeze the prototypes during first iterations (freeze_prototypes_niters argument)
  • switch to hard assignment
  • remove batch-normalization layer from the projection head
  • reduce the difficulty of the problem (less crops or softer data augmentation)

We now analyze the collapsing problem: it happens when all examples are mapped to the same unique representation. In other words, the convnet always has the same output regardless of its input, it is a constant function. All examples gets the same cluster assignment because they are identical, and the only valid assignment that satisfy the equipartition constraint in this case is the uniform assignment (1/K where K is the number of prototypes). In turn, this uniform assignment is trivial to predict since it is the same for all examples. Reducing epsilon parameter (see Eq(3) of our paper) encourages the assignments Q to be sharper (i.e. less uniform), which strongly helps avoiding collapse. However, using a too low value for epsilon may lead to numerical instability.

Training gets unstable when using the queue.

The queue is composed of feature representations from the previous batches. These lines discard the oldest feature representations from the queue and save the newest one (i.e. from the current batch) through a round-robin mechanism. This way, the assignment problem is performed on more samples: without the queue we assign B examples to num_prototypes clusters where B is the total batch size while with the queue we assign (B + queue_length) examples to num_prototypes clusters. This is especially useful when working with small batches because it improves the precision of the assignment.

If you start using the queue too early or if you use a too large queue, this can considerably disturb training: this is because the queue members are too inconsistent. After introducing the queue the loss should be lower than what it was without the queue. On the following loss curve (30 first epochs of this script) we introduced the queue at epoch 15. We observe that it made the loss go more down.

SwAV training loss batch_size=256 during the first 30 epochs

If when introducing the queue, the loss goes up and does not decrease afterwards you should stop your training and change the queue parameters. We recommend (i) using a smaller queue, (ii) starting the queue later in training.

License

See the LICENSE file for more details.

See also

PyTorch Lightning Bolts: Implementation by the Lightning team.

SwAV-TF: A TensorFlow re-implementation.

Citation

If you find this repository useful in your research, please cite:

@article{caron2020unsupervised,
  title={Unsupervised Learning of Visual Features by Contrasting Cluster Assignments},
  author={Caron, Mathilde and Misra, Ishan and Mairal, Julien and Goyal, Priya and Bojanowski, Piotr and Joulin, Armand},
  booktitle={Proceedings of Advances in Neural Information Processing Systems (NeurIPS)},
  year={2020}
}
Owner
Meta Research
Meta Research
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

CodeFlare 32 Dec 25, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
8-week curriculum for AI Builders

curriculum 8-week curriculum for AI Builders สารบัญ บทที่ 1 - Machine Learning คืออะไร บทที่ 2 - ชุดข้อมูลมหัศจรรย์และถิ่นที่อยู่ บทที่ 3 - Stochastic

AI Builders 134 Jan 03, 2023
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
🤖 Project template for your next awesome AI project. 🦾

🤖 AI Awesome Project Template 👋 Template author You may want to adjust badge links in a README.md file. 💎 Installation with pip Installation is as

Wiktor Łazarski 18 Nov 23, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Using contrastive learning and OpenAI's CLIP to find good embeddings for images with lossy transformations

The official code for the paper "Inverse Problems Leveraging Pre-trained Contrastive Representations" (to appear in NeurIPS 2021).

Sriram Ravula 26 Dec 10, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022