Personal project about genus-0 meshes, spherical harmonics and a cow

Related tags

Deep Learningmesh2sh
Overview

How to transform a cow into spherical harmonics ?

Spot the cow, from Keenan Crane's blog

Spot

Context

In the field of Deep Learning, training on images or text has made enormous progress in recent years (with a lot of data available + CNN/Transformers). The results are not yet as good for other types of signals, such as videos or 3D models. For 3D models, some recent models use a graph-based approach to deal with 3D meshes, such as Polygen. However, these networks remain difficult to train. There are plenty of alternative representations that have been used to train a Deep network on 3D models: voxels, multiview, point clouds, each having their advantages and disadvantages. In this project, I wanted to try a new one. In topology, a 3D model is nothing more than a 2D surface (possibly colored) embedded into a 3D space. If the surface is closed, we can define an interior and an exterior, but that's it. It is not like a scalar field, which is defined throughout space. Since the data is 2D, it would be useful to be able to project this 3D representation in a 2D Euclidean space, on a uniform grid, like an image, to be able to use a 2D CNN to predict our 3D models.

Deep Learning models have proven effective in learning from mel-spectrograms of audio signals, combined with convolutions. How to exploit this idea for 3D models? All periodic signals can be approximated by Fourier series. We can therefore use a Fourier series to represent any periodic function in the complex plane. In geometry, the "drawing" of this function is a closed line, so it has the topology of a circle, in 2D space. I tried to generalize this idea by using meshes with a spherical topology, which I reprojected on the sphere using a conformal (angle preserving) parametrization, then for which I calculated the harmonics thanks to a single base, that of spherical harmonics.

The origin of this project is inspired by this video by 3blue1brown.

Spherical harmonics of a 3D mesh

We only use meshes that have the topology of a sphere, i.e. they must be manifold and genus 0. The main idea is to get a spherical parametrization of the mesh, to define where are the attributes of the mesh on the sphere. Then, the spherical harmonic coefficients that best fit these attributes are calculated.

The attributes that interest us to describe the structure of the mesh are:

  • Its geometric properties. We could directly give the XYZ coordinates, but thanks to the parametrization algorithm that is used, only the density of curvature is necessary. Consequently, we also need to know the area distortion, since our parametrization is not authalic (area preserving).
  • Its colors, in RGB format. For simplicity, here I use colors by vertices, and not with a UV texture, so it loses detail.
  • The vertex density of the mesh, which allows to put more vertices in areas that originally had a lot. This density is obtained using Von Mises-Fisher kernel density estimator.

Calculates the spherical parametrization of the mesh, then displays its various attributes

First step

The spherical harmonic coefficients can be represented as images, with the coefficients corresponding to m=0 on the diagonal. The low frequencies are at the top left.

Spherical harmonics coefficients amplitude as an image for each attribute

Spherical harmonic images

Reconstruction

We can reconstruct the model from the 6 sets of coefficients, which act as 6 functions on the sphere. We first make a spherical mesh inspired by what they made in "A Curvature and Density based Generative Representation of Shapes". Some points are sampled according to the vertex density function. We then construct an isotropic mesh with respect to a given density, using Centroidal Voronoi Tesselation. The colors are interpolated at each vertex.

Then the shape is obtained by reversing our spherical parametrization. The spherical parametrization uses a mean curvature flow, which is a simple spherical parametrizations. We use the conformal variant from Can Mean-Curvature Flow Be Made Non-Singular?.

Mean curvature flow equations. See Roberta Alessandroni's Introduction to mean curvature flow for more details on the notations MCF

Reconstruction of the mesh using only spherical harmonics coefficients First step

Remarks

This project is a proof of concept. It allows to represent a model which has the topology of a sphere in spherical harmonics form. The results could be more precise, first with an authalic (area-preserving) parametrization rather than a conformal (angle-preserving) one. Also, I did not try to train a neural network using this representation, because that requires too much investment. It takes some pre-processing on common 3D datasets to keep only the watertight genus-0 meshes, and then you have to do the training, which takes time. If anyone wants to try, I'd be happy to help.

I did it out of curiosity, and to gain experience, not to have an effective result. All algorithms used were coded in python/pytorch except for some solvers from SciPy and spherical harmonics functions from shtools. It makes it easier to read, but it could be faster using other libraries.

Demo

Check the demo in Google Colab : Open In Colab

To use the functions of this project you need the dependencies below. The versions indicated are those that I have used, and are only indicative.

  • python (3.9.10)
  • pytorch (1.9.1)
  • scipy (1.7.3)
  • scikit-sparse (0.4.6)
  • pyshtools (4.9.1)

To run the demo main.ipynb, you also need :

  • jupyterlab (3.2.9)
  • trimesh (3.10.0)
  • pyvista (0.33.2)
  • pythreejs (optional, 2.3.0)

You can run these lines to install everything on Linux using conda :

conda create --name mesh2sh
conda activate mesh2sh
conda install python=3.9
conda install scipy=1.7 -c anaconda
conda install pytorch=1.9 cudatoolkit=11 -c pytorch -c conda-forge
conda install gmt intel-openmp -c conda-forge
conda install pyshtools pyvista jupyterlab -c conda-forge
conda update pyshtools -c conda-forge
pip install scikit-sparse
pip install pythreejs
pip install trimesh

Then just run the demo :

jupyter notebook main.ipynb

Contribution

To run tests, you need pytest and flake8 :

pip install pytest
pip install flake8

You can check coding style using flake8 --max-line-length=120, and run tests using python -m pytest tests/ from the root folder. Also, run the demo again to check that the results are consistent

References

MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Code for our paper: Online Variational Filtering and Parameter Learning

Variational Filtering To run phi learning on linear gaussian (Fig1a) python linear_gaussian_phi_learning.py To run phi and theta learning on linear g

16 Aug 14, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022