Convert scikit-learn models to PyTorch modules

Related tags

Deep Learningsk2torch
Overview

sk2torch

sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript.

Problems solved by this project:

  1. scikit-learn cannot perform inference on a GPU. Models like SVMs have a lot to gain from fast GPU primitives, and converting the models to PyTorch gives immediate access to these primitives.
  2. While scikit-learn supports serialization through pickle, saved models are not reproducible across versions of the library. On the other hand, TorchScript provides a convenient, safe way to save a model with its corresponding implementation. The resulting models can be loaded anywhere that PyTorch is installed, even without importing sk2torch.
  3. While certain models like SVMs and linear classifiers are theoretically end-to-end differentiable, scikit-learn provides no mechanism to compute gradients through trained models. PyTorch provides this functionality mostly for free.

See Usage for a high-level example of using the library. See How it works to see which modules are supported.

For fun, here's a vector field produced by differentiating the probability predictions of a two-class SVM (produced by this script):

A vector field quiver plot with two modes

Usage

First, train a model with scikit-learn as usual:

from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

x, y = create_some_dataset()
model = Pipeline([
    ("center", StandardScaler(with_std=False)),
    ("classify", SGDClassifier()),
])
model.fit(x, y)

Then call sk2torch.wrap on the model to create a PyTorch equivalent:

import sk2torch
import torch

torch_model = sk2torch.wrap(model)
print(torch_model.predict(torch.tensor([[1., 2., 3.]]).double()))

You can save a model with TorchScript:

import torch.jit

torch.jit.script(torch_model).save("path.pt")

# ... sk2torch need not be installed to load the model.
loaded_model = torch.jit.load("path.pt")

For a full example of training a model and using its PyTorch translation, see examples/svm_vector_field.py.

How it works

sk2torch contains PyTorch re-implementations of supported scikit-learn models. For a supported estimator X, a class TorchX in sk2torch will be able to read the attributes of X and convert them to torch.Tensor or simple Python types. TorchX subclasses torch.nn.Module and has a method for each inference API of X (e.g. predict, decision_function, etc.).

Which modules are supported? The easiest way to get an up-to-date list is via the supported_classes() function, which returns all wrap()able scikit-learn classes:

>>> import sk2torch
>>> sk2torch.supported_classes()
[<class 'sklearn.tree._classes.DecisionTreeClassifier'>, <class 'sklearn.tree._classes.DecisionTreeRegressor'>, <class 'sklearn.dummy.DummyClassifier'>, <class 'sklearn.ensemble._gb.GradientBoostingClassifier'>, <class 'sklearn.preprocessing._label.LabelBinarizer'>, <class 'sklearn.svm._classes.LinearSVC'>, <class 'sklearn.svm._classes.LinearSVR'>, <class 'sklearn.neural_network._multilayer_perceptron.MLPClassifier'>, <class 'sklearn.kernel_approximation.Nystroem'>, <class 'sklearn.pipeline.Pipeline'>, <class 'sklearn.linear_model._stochastic_gradient.SGDClassifier'>, <class 'sklearn.preprocessing._data.StandardScaler'>, <class 'sklearn.svm._classes.SVC'>, <class 'sklearn.svm._classes.NuSVC'>, <class 'sklearn.svm._classes.SVR'>, <class 'sklearn.svm._classes.NuSVR'>, <class 'sklearn.compose._target.TransformedTargetRegressor'>]

Comparison to sklearn-onnx

sklearn-onnx is an open source package for converting trained scikit-learn models into ONNX. Like sk2torch, sklearn-onnx re-implements inference functions for various models, meaning that it can also provide serialization and GPU acceleration for supported modules.

Naturally, neither library will support modules that aren't manually ported. As a result, the two libraries support different subsets of all available models/methods. For example, sk2torch supports the SVC probability prediction methods predict_proba and predict_log_prob, whereas sklearn-onnx does not.

While sklearn-onnx exports models to ONNX, sk2torch exports models to Python objects with familiar method names that can be fine-tuned, backpropagated through, and serialized in a user-friendly way. PyTorch is strictly more general than ONNX, since PyTorch models can be converted to ONNX if desired.

Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
TensorFlow tutorials and best practices.

Effective TensorFlow 2 Table of Contents Part I: TensorFlow 2 Fundamentals TensorFlow 2 Basics Broadcasting the good and the ugly Take advantage of th

Vahid Kazemi 8.7k Dec 31, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022