Official implementation of MSR-GCN (ICCV 2021 paper)

Overview

MSR-GCN

Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper)

[Paper] [Supp] [Poster] [Slides]

Authors

  1. Lingwei Dang, School of Computer Science and Engineering, South China University of Technology, China, [email protected]
  2. Yongwei Nie, School of Computer Science and Engineering, South China University of Technology, China, [email protected]
  3. Chengjiang Long, JD Finance America Corporation, USA, [email protected]
  4. Qing Zhang, School of Computer Science and Engineering, Sun Yat-sen University, China, [email protected]
  5. Guiqing Li, School of Computer Science and Engineering, South China University of Technology, China, [email protected]

Overview

    Human motion prediction is a challenging task due to the stochasticity and aperiodicity of future poses. Recently, graph convolutional network (GCN) has been proven to be very effective to learn dynamic relations among pose joints, which is helpful for pose prediction. On the other hand, one can abstract a human pose recursively to obtain a set of poses at multiple scales. With the increase of the abstraction level, the motion of the pose becomes more stable, which benefits pose prediction too. In this paper, we propose a novel multi-scale residual Graph Convolution Network (MSR-GCN) for human pose prediction task in the manner of end-to-end. The GCNs are used to extract features from fine to coarse scale and then from coarse to fine scale. The extracted features at each scale are then combined and decoded to obtain the residuals between the input and target poses. Intermediate supervisions are imposed on all the predicted poses, which enforces the network to learn more representative features. Our proposed approach is evaluated on two standard benchmark datasets, i.e., the Human3.6M dataset and the CMU Mocap dataset. Experimental results demonstrate that our method outperforms the state-of-the-art approaches.

Dependencies

  • Pytorch 1.7.0+cu110
  • Python 3.8.5
  • Nvidia RTX 3090

Get the data

Human3.6m in exponential map can be downloaded from here.

CMU mocap was obtained from the repo of ConvSeq2Seq paper.

About datasets

Human3.6M

  • A pose in h3.6m has 32 joints, from which we choose 22, and build the multi-scale by 22 -> 12 -> 7 -> 4 dividing manner.
  • We use S5 / S11 as test / valid dataset, and the rest as train dataset, testing is done on the 15 actions separately, on each we use all data instead of the randomly selected 8 samples.
  • Some joints of the origin 32 have the same position
  • The input / output length is 10 / 25

CMU Mocap dataset

  • A pose in cmu has 38 joints, from which we choose 25, and build the multi-scale by 25 -> 12 -> 7 -> 4 dividing manner.
  • CMU does not have valid dataset, testing is done on the 8 actions separately, on each we use all data instead of the random selected 8 samples.
  • Some joints of the origin 38 have the same position
  • The input / output length is 10 / 25

Train

  • train on Human3.6M:

    python main.py --exp_name=h36m --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

  • train on CMU Mocap:

    python main.py --exp_name=cmu --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

Evaluate and visualize results

  • evaluate on Human3.6M:

    python main.py --exp_name=h36m --is_load=1 --model_path=ckpt/pretrained/h36m_in10out25dctn35_best_err57.9256.pth --output_n=25 --dct_n=35 --test_manner=all

  • evaluate on CMU Mocap:

    python main.py --exp_name=cmu --is_load=1 --model_path=ckpt/pretrained/cmu_in10out25dctn35_best_err37.2310.pth --output_n=25 --dct_n=35 --test_manner=all

Results

H3.6M-10/25/35-all 80 160 320 400 560 1000 -
walking 12.16 22.65 38.65 45.24 52.72 63.05 -
eating 8.39 17.05 33.03 40.44 52.54 77.11 -
smoking 8.02 16.27 31.32 38.15 49.45 71.64 -
discussion 11.98 26.76 57.08 69.74 88.59 117.59 -
directions 8.61 19.65 43.28 53.82 71.18 100.59 -
greeting 16.48 36.95 77.32 93.38 116.24 147.23 -
phoning 10.10 20.74 41.51 51.26 68.28 104.36 -
posing 12.79 29.38 66.95 85.01 116.26 174.33 -
purchases 14.75 32.39 66.13 79.63 101.63 139.15 -
sitting 10.53 21.99 46.26 57.80 78.19 120.02 -
sittingdown 16.10 31.63 62.45 76.84 102.83 155.45 -
takingphoto 9.89 21.01 44.56 56.30 77.94 121.87 -
waiting 10.68 23.06 48.25 59.23 76.33 106.25 -
walkingdog 20.65 42.88 80.35 93.31 111.87 148.21 -
walkingtogether 10.56 20.92 37.40 43.85 52.93 65.91 -
Average 12.11 25.56 51.64 62.93 81.13 114.18 57.93

CMU-10/25/35-all 80 160 320 400 560 1000 -
basketball 10.24 18.64 36.94 45.96 61.12 86.24 -
basketball_signal 3.04 5.62 12.49 16.60 25.43 49.99 -
directing_traffic 6.13 12.60 29.37 39.22 60.46 114.56 -
jumping 15.19 28.85 55.97 69.11 92.38 126.16 -
running 13.17 20.91 29.88 33.37 38.26 43.62 -
soccer 10.92 19.40 37.41 47.00 65.25 101.85 -
walking 6.38 10.25 16.88 20.05 25.48 36.78 -
washwindow 5.41 10.93 24.51 31.79 45.13 70.16 -
Average 8.81 15.90 30.43 37.89 51.69 78.67 37.23

Train

  • train on Human3.6M: python main.py --expname=h36m --is_train=1 --output_n=25 --dct_n=35 --test_manner=all
  • train on CMU Mocap: python main.py --expname=cmu --is_train=1 --output_n=25 --dct_n=35 --test_manner=all

Citation

If you use our code, please cite our work

@InProceedings{Dang_2021_ICCV,
    author    = {Dang, Lingwei and Nie, Yongwei and Long, Chengjiang and Zhang, Qing and Li, Guiqing},
    title     = {MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {11467-11476}
}

Acknowledgments

Some of our evaluation code and data process code was adapted/ported from LearnTrajDep by Wei Mao.

Licence

MIT

Owner
LevonDang
Pursuing the M.E. degree with the School of Computer Science and Engineering, South China University of Technology, 2020-.
LevonDang
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch

Enformer - Pytorch (wip) Implementation of Enformer, Deepmind's attention network for predicting gene expression, in Pytorch. The original tensorflow

Phil Wang 235 Dec 27, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper]

Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth [Paper] Downloads [Downloads] Trained ckpt files for NYU Depth V2 and

98 Jan 01, 2023
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021