Official Repository for Machine Learning class - Physics Without Frontiers 2021

Overview

PWF 2021

Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fomentar el estudio de la ciencia en el mundo y particularmente en los países en vías de desarrollo. Siguiendo esta línea, Física Sin Fronteras busca apoyar en la realización de proyectos en países donde queda trabajo por hacer en su desarrollo científico. La particularidad de estos proyectos es que son propuestos por los países organizadores y buscan responder a las necesidades de este.

El enfoque que hemos elegido para Guatemala es el de cursos con mucha práctica, o hands-on, en inglés. Los estudiantes deben tener una participación muy activa. También, una de nuestras prioridades es la excelencia. Buscamos que nuestros expositores sean de la mejor calidad a nivel mundial. Para este año, elegimos el tema de computación cuántica que estará a cargo de Marco Cerezo, un físico guatemalteco experto en estos temas, que realiza investigación en el desarrollo y la implementación de algoritmos de computación cuántica, en el Laboratorio Nacional de Los Álamos de Nuevo Mexico, Estados Unidos. Nos enorgullece presentar a Marco como nuestro primer profesor guatemalteco en un curso de Física Sin Fronteras en Guatemala.

El curso contará con una semana de introducción propedéutica, para que los estudiantes que no estén familiarizados con la mecánica cuántica puedan seguir los conceptos presentados por Marco. Este curso será impartido por los profesores de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos (ECFM-USAC), Juan Diego Chang y Giovanni Ramírez. Juan Diego es profesor de los cursos de mecánica cuántica en la escuela y cuenta con una maestría en Física Teórica de la Universidad de Cergy-Pontoise, Francia. Giovanni, por su lado, es doctor en física de la materia condensada por la Universidad Autónoma de Madrid y es actualmente el principal investigador a nivel nacional en temas de mecánica e información cuántica. También, contaremos con auxiliares, l lqlue son estudiantes destacados de la ECFM y que actualmente realizan trabajos de final de grado en temas relacionados en colaboración con la Universidad Autónoma de México.Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fomentar el estudio de la ciencia en el mundo y particularmente en los países en vías de desarrollo. Siguiendo esta línea, Física Sin Fronteras busca apoyar en la realización de proyectos en países donde queda trabajo por hacer en su desarrollo científico. La particularidad de estos proyectos es que son propuestos por los países organizadores y buscan responder a las necesidades de este.

El enfoque que hemos elegido para Guatemala es el de cursos con mucha práctica, o hands-on, en inglés. Los estudiantes deben tener una participación muy activa. También, una de nuestras prioridades es la excelencia. Buscamos que nuestros expositores sean de la mejor calidad a nivel mundial. Para este año, elegimos el tema de computación cuántica que estará a cargo de Marco Cerezo, un físico guatemalteco experto en estos temas, que realiza investigación en el desarrollo y la implementación de algoritmos de computación cuántica, en el Laboratorio Nacional de Los Álamos de Nuevo Mexico, Estados Unidos. Nos enorgullece presentar a Marco como nuestro primer profesor guatemalteco en un curso de Física Sin Fronteras en Guatemala.

El curso contará con una semana de introducción propedéutica, para que los estudiantes que no estén familiarizados con la mecánica cuántica puedan seguir los conceptos presentados por Marco. Este curso será impartido por los profesores de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos (ECFM-USAC), Juan Diego Chang y Giovanni Ramírez. Juan Diego es profesor de los cursos de mecánica cuántica en la escuela y cuenta con una maestría en Física Teórica de la Universidad de Cergy-Pontoise, Francia. Giovanni, por su lado, es doctor en física de la materia condensada por la Universidad Autónoma de Madrid y es actualmente el principal investigador a nivel nacional en temas de mecánica e información cuántica. También, contaremos con auxiliares que son estudiantes destacados de la ECFM y que actualmente realizan trabajos de final de grado en temas relacionados en colaboración con la Universidad Autónoma de México.

Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
DGL-TreeSearch and the Gurobi-MWIS interface

Independent Set Benchmarking Suite This repository contains the code for our maximum independent set benchmarking suite as well as our implementations

Maximilian Böther 19 Nov 22, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
In generative deep geometry learning, we often get many obj files remain to be rendered

a python prompt cli script for blender batch render In deep generative geometry learning, we always get many .obj files to be rendered. Our rendered i

Tian-yi Liang 1 Mar 20, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022