Official Repository for Machine Learning class - Physics Without Frontiers 2021

Overview

PWF 2021

Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fomentar el estudio de la ciencia en el mundo y particularmente en los países en vías de desarrollo. Siguiendo esta línea, Física Sin Fronteras busca apoyar en la realización de proyectos en países donde queda trabajo por hacer en su desarrollo científico. La particularidad de estos proyectos es que son propuestos por los países organizadores y buscan responder a las necesidades de este.

El enfoque que hemos elegido para Guatemala es el de cursos con mucha práctica, o hands-on, en inglés. Los estudiantes deben tener una participación muy activa. También, una de nuestras prioridades es la excelencia. Buscamos que nuestros expositores sean de la mejor calidad a nivel mundial. Para este año, elegimos el tema de computación cuántica que estará a cargo de Marco Cerezo, un físico guatemalteco experto en estos temas, que realiza investigación en el desarrollo y la implementación de algoritmos de computación cuántica, en el Laboratorio Nacional de Los Álamos de Nuevo Mexico, Estados Unidos. Nos enorgullece presentar a Marco como nuestro primer profesor guatemalteco en un curso de Física Sin Fronteras en Guatemala.

El curso contará con una semana de introducción propedéutica, para que los estudiantes que no estén familiarizados con la mecánica cuántica puedan seguir los conceptos presentados por Marco. Este curso será impartido por los profesores de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos (ECFM-USAC), Juan Diego Chang y Giovanni Ramírez. Juan Diego es profesor de los cursos de mecánica cuántica en la escuela y cuenta con una maestría en Física Teórica de la Universidad de Cergy-Pontoise, Francia. Giovanni, por su lado, es doctor en física de la materia condensada por la Universidad Autónoma de Madrid y es actualmente el principal investigador a nivel nacional en temas de mecánica e información cuántica. También, contaremos con auxiliares, l lqlue son estudiantes destacados de la ECFM y que actualmente realizan trabajos de final de grado en temas relacionados en colaboración con la Universidad Autónoma de México.Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fomentar el estudio de la ciencia en el mundo y particularmente en los países en vías de desarrollo. Siguiendo esta línea, Física Sin Fronteras busca apoyar en la realización de proyectos en países donde queda trabajo por hacer en su desarrollo científico. La particularidad de estos proyectos es que son propuestos por los países organizadores y buscan responder a las necesidades de este.

El enfoque que hemos elegido para Guatemala es el de cursos con mucha práctica, o hands-on, en inglés. Los estudiantes deben tener una participación muy activa. También, una de nuestras prioridades es la excelencia. Buscamos que nuestros expositores sean de la mejor calidad a nivel mundial. Para este año, elegimos el tema de computación cuántica que estará a cargo de Marco Cerezo, un físico guatemalteco experto en estos temas, que realiza investigación en el desarrollo y la implementación de algoritmos de computación cuántica, en el Laboratorio Nacional de Los Álamos de Nuevo Mexico, Estados Unidos. Nos enorgullece presentar a Marco como nuestro primer profesor guatemalteco en un curso de Física Sin Fronteras en Guatemala.

El curso contará con una semana de introducción propedéutica, para que los estudiantes que no estén familiarizados con la mecánica cuántica puedan seguir los conceptos presentados por Marco. Este curso será impartido por los profesores de la Escuela de Ciencias Físicas y Matemáticas de la Universidad de San Carlos (ECFM-USAC), Juan Diego Chang y Giovanni Ramírez. Juan Diego es profesor de los cursos de mecánica cuántica en la escuela y cuenta con una maestría en Física Teórica de la Universidad de Cergy-Pontoise, Francia. Giovanni, por su lado, es doctor en física de la materia condensada por la Universidad Autónoma de Madrid y es actualmente el principal investigador a nivel nacional en temas de mecánica e información cuántica. También, contaremos con auxiliares que son estudiantes destacados de la ECFM y que actualmente realizan trabajos de final de grado en temas relacionados en colaboración con la Universidad Autónoma de México.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
tsflex - feature-extraction benchmarking

tsflex - feature-extraction benchmarking This repository withholds the benchmark results and visualization code of the tsflex paper and toolkit. Flow

PreDiCT.IDLab 5 Mar 25, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Vikrant Deshpande 1 Nov 17, 2022
EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

EncT5 (Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks About Finetune T5 model for classification & r

Jangwon Park 34 Jan 01, 2023
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

AI4Finance 2.5k Jan 08, 2023
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models

Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I

3 May 08, 2022