ICON: Implicit Clothed humans Obtained from Normals

Related tags

Deep LearningICON
Overview

ICON: Implicit Clothed humans Obtained from Normals

Logo

arXiv, December 2021.
Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black

Paper PDF Project Page



Table of Contents
  1. Who needs ICON
  2. More Qualitative Results
  3. Introduction Video
  4. Citation
  5. Acknowledgments
  6. Disclosure
  7. Contact


Who needs ICON?

  • If you want to reconstruct 3D clothed humans in unconstrained poses from in-the-wild images
    • together with the body under clothing (e.g. SMPL, SMPL-X)
    • clothed-body normal maps (front/back) predicted from images
All Intermedia Results
ICON's outputs from single RGB image
  • If you want to obtain a realistic and animatable 3D clothed avatar direclty from video / a sequence of monocular images
    • fully-textured with per-vertex color
    • could be animated by SMPL pose parameters
    • with pose-dependent clothing deformation
ICON+SCANimate+AIST++
3D Clothed Avatar, created from 400+ images using ICON+SCANimate, animated by AIST++


More Qualitative Results

Comparison
Comparison with other state-of-the-art methods
extreme
Reconstruction on in-the-wild photos with extreme poses (GIF)
extreme
Reconstruction on in-the-wild photos with extreme poses (PNG)
extreme
Predicted normals on in-the-wild images with extreme poses


Introduction Video

ICON.mp4


Citation

@misc{xiu2021icon,
      title={ICON: Implicit Clothed humans Obtained from Normals}, 
      author={Yuliang Xiu and Jinlong Yang and Dimitrios Tzionas and Michael J. Black},
      year={2021},
      eprint={2112.09127},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgments

We thank Yao Feng, Soubhik Sanyal, Qianli Ma, Hongwei Yi, Chun-Hao Paul Huang, Weiyang Liu, and Xu Chen for their feedback and discussions, Tsvetelina Alexiadis for her help with the AMT perceptual study, Taylor McConnell for her voice over, and Yuanlu Xu's help in comparing with ARCH and ARCH++.

Here are some great resources we benefit from:

Some images used in the qualitative examples come from pinterest.com.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.860768 (CLIPE Project).

Disclosure

MJB has received research gift funds from Adobe, Intel, Nvidia, Facebook, and Amazon. While MJB is a part-time employee of Amazon, his research was performed solely at, and funded solely by, Max Planck. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH.

Contact

For more questions, please contact [email protected]

Comments
  • OpenGL.raw.EGL._errors.EGLError: EGLError( )

    OpenGL.raw.EGL._errors.EGLError: EGLError( )

    When I run the command of "bash render_batch.sh debug", it gives an error as following

    OpenGL.raw.EGL._errors.EGLError: EGLError( err = EGL_NOT_INITIALIZED, baseOperation = eglInitialize, cArguments = ( <OpenGL._opaque.EGLDisplay_pointer object at 0x7f7b3d0ee2c0>, <importlib._bootstrap.LP_c_int object at 0x7f7b3d0ee440>, <importlib._bootstrap.LP_c_int object at 0x7f7b3d106bc0>, ), result = 0 )

    How can I fix this?

    documentation CUDA or OpenGL Dataset 
    opened by Yuhuoo 16
  • ConnectionError: HTTPSConnectionPool

    ConnectionError: HTTPSConnectionPool

    requests.exceptions.ConnectionError: HTTPSConnectionPool(host='drive.google.com', port=443): Max retries exceeded with url: /uc?id=1tCU5MM1LhRgGou5OpmpjBQbSrYIUoYab (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7fbc4ad7deb0>: Failed to establish a new connection: [Errno 110] Connection timed out'))

    documentation rembg 
    opened by shuoshuoxu 12
  • Trouble getting ICON results

    Trouble getting ICON results

    After installing all packages, I got the results successfully for PIFu and PaMIR. I faced the runtime error when trying to get the ICON demo result. Could you guide what setting was wrong?

    $ python infer.py -cfg ../configs/icon-filter.yaml -gpu 0 -in_dir ../examples -out_dir ../results
    
    Traceback (most recent call last):
      File "infer.py", line 304, in <module>
        verts_pr, faces_pr, _ = model.test_single(in_tensor)
      File "./ICON/apps/ICON.py", line 738, in test_single
        sdf = self.reconEngine(opt=self.cfg,
      File "./.virtualenvs/icon/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "../lib/common/seg3d_lossless.py", line 148, in forward
        return self._forward_faster(**kwargs)
      File "../lib/common/seg3d_lossless.py", line 170, in _forward_faster
        occupancys = self.batch_eval(coords, **kwargs)
      File "../lib/common/seg3d_lossless.py", line 139, in batch_eval
        occupancys = self.query_func(**kwargs, points=coords2D)
      File "../lib/common/train_util.py", line 338, in query_func
        preds = netG.query(features=features,
      File "../lib/net/HGPIFuNet.py", line 285, in query
        smpl_sdf, smpl_norm, smpl_cmap, smpl_ind = cal_sdf_batch(
      File "../lib/dataset/mesh_util.py", line 231, in cal_sdf_batch
        residues, normals, pts_cmap, pts_ind = func(
      File "./.virtualenvs/icon/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "./.virtualenvs/icon/lib/python3.8/site-packages/bvh_distance_queries/mesh_distance.py", line 79, in forward
        output = self.search_tree(triangles, points)
      File "./.virtualenvs/icon/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "./.virtualenvs/icon/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
        return func(*args, **kwargs)
      File "./.virtualenvs/icon/lib/python3.8/site-packages/bvh_distance_queries/bvh_search_tree.py", line 109, in forward
        output = BVHFunction.apply(
      File "./.virtualenvs/icon/lib/python3.8/site-packages/bvh_distance_queries/bvh_search_tree.py", line 42, in forward
        outputs = bvh_distance_queries_cuda.distance_queries(
    RuntimeError: after reduction step 1: cudaErrorInvalidDevice: invalid device ordinal
    
    CUDA or OpenGL 
    opened by Samiepapa 12
  • THuman Dataset preprocess

    THuman Dataset preprocess

    Hi, I found the program was running so slowly when I ran bash render_batch.sh debug all, I figured out it stopped at hits = mesh.ray.intersects_any (origins + delta * normals, vectors), and the number of rays is the millions, is that the reason why it was too slow?

    documentation Dataset 
    opened by mmmcn 11
  • Colab main cell doing nothing

    Colab main cell doing nothing

    Hi, first thanks for your code In colab version, when running the cell that starts with

    run the test on examples

    the execution is very fast, no errors, but do nothing. Next cell show errors: FileNotFoundError: [Errno 2] No such file or directory: '/content/ICON/results/icon-filter/vid/22097467bffc92d4a5c4246f7d4edb75_display.mp4'

    many thanks

    opened by smithee77 9
  • Error: undefined symbol: _ZNSt15__exception_ptr13exception_ptr10_M_releaseEv

    Error: undefined symbol: _ZNSt15__exception_ptr13exception_ptr10_M_releaseEv

    Getting this error when installing locally on my workstation via colab bash script.

    .../ICON/pytorch3d/pytorch3d/_C.cpython-38-x86_64-linux-gnu.so: undefined symbol: _ZNSt15__exception_ptr13exception_ptr10_M_releaseEv

    This after installing pytorch3d locally as recommended. Conda has too many conflicts and never resolves.

    Installing torch through pip works (1.8.2+cu111) up until the next steps of infer.py because bvh_distance_queries only supports cuda 11.0. This would most likely require compiling against 11.0, but it will probably lead to more errors as I don't know what this repository's dependencies require as far as torch goes.

    CUDA or OpenGL 
    opened by ExponentialML 9
  • The side face seems not good in training phase.

    The side face seems not good in training phase.

    I followed the instruction to process the THuman2.0 dataset and train the ICON. After 10 epochs, the result on tensorboard seems not good especially the reconstruction of the side face. I can't find where the problem is. image image

    The change of loss during training is

    微信图片_20221124141912

    opened by River-Zhang 7
  • Question for Reproducing Result

    Question for Reproducing Result

    Hi, I reproduced ICON and trained with THuman2.0.

    As a result of the my training, only this model produces a lot of noise and isolated mesh.

    Would you give me an advice?

    I used [-1, 1] SMPL vertices, query points, and 15.0 SDF clipping.

    I believe that ICON has great potential and generalization performance.

    But I don't know what is the problem.

    The results below are about unseen data, and I used pre-trained GCMR just like PaMIR for SMPL prediction.

    snapshot00 snapshot01 snapshot02 snapshot03 snapshot04 snapshot05

    Thank you.

    opened by EadCat 7
  • Problem about SMPL refining loss.

    Problem about SMPL refining loss.

    Many thanks to the author for his work. I found a question in the process of reading papers and code. The paper introduces in the Refining SMPL section that the results of SMPL modeling can be iteratively optimized during the inference process. The loss function includes two parts, the L1 difference between the unclothed normal map and the normal map of the model prediction results, and The L1 difference between the mask of the smpl normal map and the mask of the original image, but you did not implement the corresponding implementation in the code. What is the reason for this? Is the existing code implementation more efficient than the original implementation?

                # silhouette loss
                smpl_arr = torch.cat([T_mask_F, T_mask_B], dim=-1)[0]       # smpl mask maps
                gt_arr = torch.cat(                                         # clothed normal maps
                    [in_tensor['normal_F'][0], in_tensor['normal_B'][0]],
                    dim=2).permute(1, 2, 0)
                gt_arr = ((gt_arr + 1.0) * 0.5).to(device)
                bg_color = torch.Tensor([0.5, 0.5,
                                         0.5]).unsqueeze(0).unsqueeze(0).to(device)
                gt_arr = ((gt_arr - bg_color).sum(dim=-1) != 0.0).float()
                diff_S = torch.abs(smpl_arr - gt_arr)
                losses['silhouette']['value'] = diff_S.mean()
    
    HPS Discussion 
    opened by SongYupei 7
  • Some questions about training

    Some questions about training

    I would like to know some details about training. Is the Ground-Truth SMPL or the predicted SMPL used in training ICON? Also, what about normal images? According to my understanding of the paper and practice, ICON should train the normal network first and then train the implicit reconstruction network. When I reproduce ICON, I don't know whether to choose the Ground-Truth or the predicted data for SMPL model and normal images, respectively.

    Dataset Training 
    opened by sunjc0306 7
  • ModuleNotFoundError: No module named 'bvh_distance_queries_cuda'

    ModuleNotFoundError: No module named 'bvh_distance_queries_cuda'

    Hi, thank you so much for the wonderful work and corresponding codes. I am facing the following issue: https://github.com/YuliangXiu/ICON/blob/0045bd10f076bf367d25b7dac41d0d5887b8694f/lib/bvh-distance-queries/bvh_distance_queries/bvh_search_tree.py#L27

    Is there any .py file called bvh_distance_queries_cuda ? Please let me know a possible solution. Thank you for your effort and help :) :) :)

    CUDA or OpenGL 
    opened by Pallab38 7
  • Question about training

    Question about training

    After training of the implicit MLP, I got quite wired results. The reconstructed meshes are poor. 0_nc The evaluation results shows that NC is very low, but chamfer and p2s are very high. eval Do you know where the problem is? I would appreciate it a lot if you could give me some suggestions!

    opened by Zhangjzh 4
  • Question of  cloth refinement

    Question of cloth refinement

    Hi, I'm confused about local_affine_model in the cloth refinement. I find that you use the LocalAffine() converting the verts of the refinemesh to the affined verts. The step seems to train a Affinemodel. I know that we need get the loss between P_normal from the mesh and normal of the image to optimizer the verts, but I don't understand why we need introduct the Affinemodel. The procedure of localAffine is meaning getting the Affine Matrix under the Camera coordinate system? I confused about these.

    opened by Yuhuoo 1
  • Can't setup ICON on Ubuntu / Colab

    Can't setup ICON on Ubuntu / Colab

    Unfortunately, I can't manage to install ICON locally. The Colab Notebook and the model on Huggingface also seem to be broken. Would it be possible to update the documentation / environment or share a Docker file?

    opened by c6s0 4
  • how to get real depth value from depth map

    how to get real depth value from depth map

    Hi, recently I've been trying to use depth map as prior information, but how can I generate the point cloud at camera coordinate space or model space from the given depth map(generated by render_single.py) ? For example, how can i generate point cloud in camera/view space by depth_F/xxx.png below, i.e. how can i get the real depth value in camera space. I tried to see the coordinate transformation in the code, it seems that I can get perspective matrix and model_view matrix in lib/render/camer.py , which may transform the model from local space into clip space. But I am still confused about how to convert the depth map to another space.

    It would be very appricated if anyone could give me some advice!

    opened by mmmcn 2
  • scripts/render_single.sh: line 33: 137550 Killed

    scripts/render_single.sh: line 33: 137550 Killed

    ubuntu 22.04 + NVIDIA 2080Ti.

    I encountered this error when execute this script "bash scripts/render_batch.sh debug all".

    thuman2 START----------
    Debug renderer
    Rendering thuman2 0001
    /home/hcp/anaconda3/envs/metaverse/lib/python3.8/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.23.3
      warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
    
    **scripts/render_single.sh: line 33: 137550 Killed                  python $PYTHON_SCRIPT -s $SUBJECT -o $SAVE_DIR -r $NUM_VIEWS -w $SIZE**
    thuman2 END----------
    
    opened by hcp6897 1
  • A weird bug: The data is not on the same device.

    A weird bug: The data is not on the same device.

    https://github.com/YuliangXiu/ICON/blob/ece5a09aa2d56aec28017430e65a0352622a0f30/lib/dataset/mesh_util.py#L283

    ` print(triangles.device) # cuda:1

    print(points.device) # cuda:1

    residues, pts_ind, _ = point_to_mesh_distance(points, triangles)

    print(triangles.device) # cuda:1

    print(pts_ind.device) # cuda:0

    print(residues.device) # cuda:0`

    command: python -m apps.infer -cfg ./configs/icon-filter.yaml -gpu 1 -in_dir {*} -out_dir {*} 'CUDA_VISIBLE_DEVICES=1' doesn't work either.

    CUDA or OpenGL 
    opened by caiyongqi 11
Releases(v.1.1.0)
  • v.1.1.0(Aug 5, 2022)

    Important updates:

    • Support normal network training
    • New interactive demo deployed on HuggingFace space
    • Faster Google Colab environment setup
    • Improved clothing refinement module
    • Fix several bugs and refactor some messy functions
    Source code(tar.gz)
    Source code(zip)
  • v.1.0.0(Jun 15, 2022)

    The first stable version (ICON v.1.0.0) comes out!

    • Dataset: support THuman2.0
    • Inference: support PyMAF, PIXIE, PARE, HybrIK, BEV
    • Training & Evaluation: support PIFu, PaMIR, ICON
    • Add-on: garment extraction from fashion images
    Source code(tar.gz)
    Source code(zip)
  • v.1.0.0-rc2(Mar 7, 2022)

    Some updates:

    • HPS support: PyMAF (SMPL), PARE (SMPL), PIXIE (SMPL-X)
    • Google Colab support
    • Replace bvh-distance-queries with PyTorch3D and Kaolin to improve CUDA compatibility
    • Fix some issues
    Source code(tar.gz)
    Source code(zip)
  • v.1.0.0-rc1(Jan 30, 2022)

    First commit of ICON:

    • image-based inference code
    • pretrained model of ICON, PIFu*, PaMIR* (*: self-implementation)
    • homepage: https://icon.is.tue.mpg.de
    Source code(tar.gz)
    Source code(zip)
Owner
Yuliang Xiu
Ph.D. Student in Graphics & Vision
Yuliang Xiu
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
A curated list of awesome Model-Based RL resources

Awesome Model-Based Reinforcement Learning This is a collection of research papers for model-based reinforcement learning (mbrl). And the repository w

OpenDILab 427 Jan 03, 2023
Implementation of "Efficient Regional Memory Network for Video Object Segmentation" (Xie et al., CVPR 2021).

RMNet This repository contains the source code for the paper Efficient Regional Memory Network for Video Object Segmentation. Cite this work @inprocee

Haozhe Xie 76 Dec 14, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022