Deep Learning as a Cloud API Service.

Overview

Deep API

Deep Learning as Cloud APIs.

This project provides pre-trained deep learning models as a cloud API service. A web interface is available as well.

Quick Start

Python 3:

$ pip3 install -r requirements.txt
$ python main.py

Anaconda:

$ conda env create -f environment.yml
$ conda activate cloudapi
$ python main.py

Using Docker:

docker run -p 8080:8080 wuhanstudio/deep-api

Navigate to https://localhost:8080

API Client

It's possible to get predictions by sending a POST request to http://127.0.0.1:8080/vgg16_cifar10.

Using curl:

```
export IMAGE_FILE=test/cat.jpg
(echo -n '{"file": "'; base64 $IMAGE_FILE; echo '"}') | \
curl -H "Content-Type: application/json" \
     -d @- http://127.0.0.1:8080/vgg16_cifar10
```

Using Python:

def classification(url, file):
    # Load the input image and construct the payload for the request
    image = Image.open(file)
    buff = BytesIO()
    image.save(buff, format="JPEG")

    data = {'file': base64.b64encode(buff.getvalue()).decode("utf-8")}
    return requests.post(url, json=data).json()

res = classification('http://127.0.0.1:8080/vgg', 'cat.jpg')

This python script is available in the test folder. You should see prediction results by running python3 minimal.py:

cat            0.99804
deer           0.00156
truck          0.00012
airplane       0.00010
dog            0.00009
bird           0.00005
ship           0.00003
frog           0.00001
horse          0.00001
automobile     0.00001

Concurrent clients

Sending 5 concurrent requests to the api server:

$ python3 multi-client.py --num_workers 5 cat.jpg

You should see the result:

----- start -----
Sending requests
Sending requests
Sending requests
Sending requests
Sending requests
------ end ------
Concurrent Requests: 5
Total Runtime: 2.441638708114624

Full APIs

Post URLs:

Model Dataset Post URL
VGG-16 Cifar10 http://127.0.0.1:8080/vgg16_cifar10
VGG-16 ImageNet http://127.0.0.1:8080/vgg16
Resnet-50 ImageNet http://127.0.0.1:8080/resnet50
Inception v3 ImageNet http://127.0.0.1:8080/inceptionv3

Post Data (JSON):

{
  "file": ""
}

Query Parameters:

Name Type Default Value
top integer 10 One of [1, 3, 5, 10], top=5 returns top 5 predictions.
no-prob integer 0 no-prob=1 returns labels without probabilities. no-prob=0 returns labels and probabilities.

Example post urls (returns top 10 predictions with probabilities):

http://127.0.0.1:8080/vgg16?top=10&no-prob=0

Returns (JSON):

Key Value
success True / False
Predictions Array of prediction results, each element contains {"labels": "cat", "probability": 0.99}
error The error message if any

Example returned json:

{
  "success": true,
  "predictions": [
    {
      "label": "cat",
      "probability": 0.9996376037597656
    },
    {
      "label": "dog",
      "probability": 0.0002855948405340314
    },
    {
      "label": "deer",
      "probability": 0.000021985460989526473
    },
    {
      "label": "bird",
      "probability": 0.000021391952031990513
    },
    {
      "label": "horse",
      "probability": 0.000013297495570441242
    },
    {
      "label": "airplane",
      "probability": 0.000006046993803465739
    },
    {
      "label": "ship",
      "probability": 0.0000044226785576029215
    },
    {
      "label": "frog",
      "probability": 0.0000036349929359857924
    },
    {
      "label": "truck",
      "probability": 0.0000035354278224986047
    },
    {
      "label": "automobile",
      "probability": 0.000002384880417594104
    }
  ],
}

References

You might also like...
 Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)
A simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

this is a simple rest api serving a deep learning model that classifies human gender based on their faces. (vgg16 transfare learning)

Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Deploy a ML inference service on a budget in less than 10 lines of code.
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Space-event-trace - Tracing service for spaceteam events
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Releases(v0.1.0)
  • v0.1.0(Oct 26, 2021)

    Deep Learning as a Cloud API Service that supports:

    • Pretrained VGG16 model on Cifar10 dataset
    • Pretrained VGG16 model on ImageNet dataset
    • Pretrained Resnet50 model on ImageNet dataset
    • Pretrained Inceptionv3 model on ImageNet dataset
    • Automatic python client code generation
    • Automatic curl client code generation
    • A web interface for the api service

    A minimal version is deployed here:

    http://api.wuhanstudio.uk/

    Source code(tar.gz)
    Source code(zip)
Owner
Wu Han
Ph.D. Student at the University of Exeter in the U.K. for Autonomous System Security. Prior research experience at RT-Thread, LAIX, Xilinx.
Wu Han
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022