Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Overview

Adversarial Learning for Semi-supervised Semantic Segmentation

This repo is the pytorch implementation of the following paper:

Adversarial Learning for Semi-supervised Semantic Segmentation
Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-Yu Lin, and Ming-Hsuan Yang
Proceedings of the British Machine Vision Conference (BMVC), 2018.

Contact: Wei-Chih Hung (whung8 at ucmerced dot edu)

The code are heavily borrowed from a pytorch DeepLab implementation (Link). The baseline model is DeepLabv2-Resnet101 without multiscale training and CRF post processing, which yields meanIOU 73.6% on the VOC2012 validation set.

Please cite our paper if you find it useful for your research.

@inproceedings{Hung_semiseg_2018,
  author = {W.-C. Hung and Y.-H. Tsai and Y.-T. Liou and Y.-Y. Lin and M.-H. Yang},
  booktitle = {Proceedings of the British Machine Vision Conference (BMVC)},
  title = {Adversarial Learning for Semi-supervised Semantic Segmentation},
  year = {2018}
}

Prerequisite

  • CUDA/CUDNN
  • pytorch >= 0.2 (We only support 0.4 for evaluation. Will migrate the code to 0.4 soon.)
  • python-opencv >=3.4.0 (3.3 will cause extra GPU memory on multithread data loader)

Installation

  • Clone this repo
git clone https://github.com/hfslyc/AdvSemiSeg.git
  • Place VOC2012 dataset in AdvSemiSeg/dataset/VOC2012. For training, you will need the augmented labels (Download). The folder structure should be like:
AdvSemiSeg/dataset/VOC2012/JPEGImages
                          /SegmentationClassAug

Testing on VOC2012 validation set with pretrained models

python evaluate_voc.py --pretrained-model semi0.125 --save-dir results

It will download the pretrained model with 1/8 training data and evaluate on the VOC2012 val set. The colorized images will be saved in results/ and the detailed class IOU will be saved in results/result.txt. The mean IOU should be around 68.8%.

  • Available --pretrained-model options: semi0.125, semi0.25, semi0.5 , advFull.

Example visualization results

Training on VOC2012

python train.py --snapshot-dir snapshots \
                --partial-data 0.125 \
                --num-steps 20000 \
                --lambda-adv-pred 0.01 \
                --lambda-semi 0.1 --semi-start 5000 --mask-T 0.2

The parameters correspond to those in Table 5 of the paper.

To evaluate trained model, execute the following:

python evaluate_voc.py --restore-from snapshots/VOC_20000.pth \
                       --save-dir results

Changelog

  • 07/24/2018: Update BMVC results
Owner
Wayne Hung
Wayne Hung
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
Official implementation of the NeurIPS'21 paper 'Conditional Generation Using Polynomial Expansions'.

Conditional Generation Using Polynomial Expansions Official implementation of the conditional image generation experiments as described on the NeurIPS

Grigoris 4 Aug 07, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022