Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Overview

Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning

Official PyTorch implementation of "Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning" (AAAI 2021)

Geonmo Gu*1, Byungsoo Ko*1, Han-Gyu Kim2 (* Authors contributed equally.)

1@NAVER/LINE Vision, 2@NAVER Clova Speech

Overview

Proxy Synthesis

  • Proxy Synthesis (PS) is a novel regularizer for any softmax variants and proxy-based losses in deep metric learning.

How it works?

  • Proxy Synthesis exploits synthetic classes and improves generalization by considering class relations and obtaining smooth decision boundaries.
  • Synthetic classes mimic unseen classes during training phase as described in below Figure.

Experimental results

  • Proxy Synthesis improves performance for every loss and benchmark dataset.

Getting Started

Installation

  1. Clone the repository locally
$ git clone https://github.com/navervision/proxy-synthesis
  1. Create conda virtual environment
$ conda create -n proxy_synthesis python=3.7 anaconda
$ conda activate proxy_synthesis
  1. Install pytorch
$ conda install pytorch torchvision cudatoolkit=<YOUR_CUDA_VERSION> -c pytorch
  1. Install faiss
$ conda install faiss-gpu cudatoolkit=<YOUR_CUDA_VERSION> -c pytorch
  1. Install requirements
$ pip install -r requirements.txt

Prepare Data

  • Download CARS196 dataset and unzip
$ wget http://imagenet.stanford.edu/internal/car196/car_ims.tgz
$ tar zxvf car_ims.tgz -C ./dataset
  • Rearrange CARS196 directory by following structure
# Dataset structure
/dataset/carDB/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  test/
    class1/
      img3.jpeg
    class2/
      img4.jpeg
# Rearrange dataset structure
$ python dataset/prepare_cars.py

Train models

Norm-SoftMax loss with CARS196

# Norm-SoftMax
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_norm_softmax \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Norm_SoftMax \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=23.0 --check_epoch=5

PS + Norm-SoftMax loss with CARS196

# PS + Norm-SoftMax
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_PS_norm_softmax \
--data=./dataset/carDB --data_name=cars196 \
 --dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Norm_SoftMax \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=23.0 --check_epoch=5 \
--ps_alpha=0.40 --ps_mu=1.0

Proxy-NCA loss with CARS196

# Proxy-NCA
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_proxy_nca \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Proxy_NCA \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=12.0 --check_epoch=5

PS + Proxy-NCA loss with CARS196

# PS + Proxy-NCA
$ python main.py --gpu=0 \
--save_path=./logs/CARS196_PS_proxy_nca \
--data=./dataset/carDB --data_name=cars196 \
--dim=512 --batch_size=128 --epochs=130 \
--freeze_BN --loss=Proxy_NCA \
--decay_step=50 --decay_stop=50 --n_instance=1 \
--scale=12.0 --check_epoch=5 \
--ps_alpha=0.40 --ps_mu=1.0

Check Test Results

$ tensorboard --logdir=logs --port=10000

Experimental results

  • We report [email protected], RP and MAP performances of each loss, which are trained with CARS196 dataset for 8 runs.

[email protected]

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 83.38 83.25 83.25 83.18 83.05 82.90 82.83 82.79 83.08 ± 0.21
PS + Norm-SoftMax 84.69 84.58 84.45 84.35 84.22 83.95 83.91 83.89 84.25 ± 0.31
Proxy-NCA 83.74 83.69 83.62 83.32 83.06 83.00 82.97 82.84 83.28 ± 0.36
PS + Proxy-NCA 84.52 84.39 84.32 84.29 84.22 84.12 83.94 83.88 84.21 ± 0.21

RP

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 35.85 35.51 35.28 35.28 35.24 34.95 34.87 34.84 35.23 ± 0.34
PS + Norm-SoftMax 37.01 36.98 36.92 36.74 36.74 36.73 36.54 36.45 36.76 ± 0.20
Proxy-NCA 36.08 35.85 35.79 35.66 35.66 35.63 35.47 35.43 35.70 ± 0.21
PS + Proxy-NCA 36.97 36.84 36.72 36.64 36.63 36.60 36.43 36.41 36.66 ± 0.18

MAP

Loss 1 2 3 4 5 6 7 8 Mean ± std
Norm-SoftMax 25.56 25.56 25.00 24.93 24.90 24.59 24.57 24.56 24.92 ± 0.35
PS + Norm-SoftMax 26.71 26.67 26.65 26.56 26.53 26.52 26.30 26.17 26.51 ± 0.18
Proxy-NCA 25.66 25.52 25.37 25.36 25.33 25.26 25.22 25.04 25.35 ± 0.18
PS + Proxy-NCA 26.77 26.63 26.50 26.42 26.37 26.31 26.25 26.12 26.42 ± 0.20

Performance Graph

  • Below figure shows performance graph of test set during training.

Reference

  • Our code is based on SoftTriple repository (Arxiv, Github)

Citation

If you find Proxy Synthesis useful in your research, please consider to cite the following paper.

@inproceedings{gu2020proxy,
    title={Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning},
    author={Geonmo Gu, Byungsoo Ko, and Han-Gyu Kim},
    booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
    year={2021}
}

License

Copyright 2021-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
NAVER/LINE Vision
Open source repository of Vision, NAVER & LINE
NAVER/LINE Vision
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

GLANet The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv Framework: visualization results: Getting Starte

stanley 29 Dec 14, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Jan 09, 2023
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perform basic tasks.

AI_Personal_Voice_Assistant_Using_Python A project to build an AI voice assistant using Python . The Voice assistant interacts with the humans to perf

Chumui Tripura 1 Oct 30, 2021
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022