Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Overview

Time-Sensitive-QA

The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset is collected by UCSB NLP group and issued under BSD 3-Clause "New" or "Revised" License.

This dataset is aimed to study the existing reading comprehension models' capability to perform temporal reasoning, and see whether they are sensitive to the temporal description in the given question. An example of annotated question-answer pairs are listed as follows: overview

Repo Structure

  • dataset/: this folder contains all the dataset
  • dataset/annotated*: these files are the annotated (passage, time-evolving facts) by crowd-workers.
  • dataset/train-dev-test: these files are synthesized using templates, including both easy and hard versions.
  • BigBird/: all the running code for BigBird models
  • FiD/: all the running code for fusion-in-decoder models

Requirements

  1. BigBird-Specific Requirements
  1. FiD-Specific Requirements

BigBird

Extractive QA baseline model, first switch to the BigBird Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=8

Running Evaluation (Hard)

    python -m BigBird.main model_id=nq dataset=hard cuda=[DEVICE] mode=eval model_path=[YOUR_MODEL]

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard cuda=[DEVICE] mode=train per_gpu_train_batch_size=2

Running Evaluation (Hard)

    python -m BigBird.main model_id=triviaqa dataset=hard mode=eval cuda=[DEVICE] model_path=[YOUR_MODEL]

Fusion-in Decoder

Generative QA baseline model, first switch to the FiD Conda environment:

Initialize from NQ checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/nq_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

Initialize from TriviaQA checkpoint

Running Training (Hard)

    python -m FiD.main mode=train dataset=hard model_path=/data2/wenhu/Time-Sensitive-QA/FiD/pretrained_models/tqa_reader_base/

Running Evaluation (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=hard model_path=[YOUR_MODEL] 

Running Evalution on Human-Test (Hard)

    python -m FiD.main mode=eval cuda=3 dataset=human_hard model_path=[YOUR_MODEL] 

License

The data and code are released under BSD 3-Clause "New" or "Revised" License.

Report

Please create an issue or send an email to [email protected] for any questions/bugs/etc.

Owner
wenhu chen
Research Scientist at Google AI, major in NLP/DL; Incoming Assistant Professor
wenhu chen
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022