GLANet - The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

Related tags

Deep LearningGLANet
Overview

GLANet

The code for Global and Local Alignment Networks for Unpaired Image-to-Image Translation arxiv

Framework: image visualization results: image

Getting Started

Installation

This code was tested with Pytorch 1.7.0, CUDA 10.2, and Python 3.7

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/ygjwd12345/GLANet.git
cd GLANet

Datasets

Please refer to the original CUT and CycleGAN to download datasets and learn how to create your own datasets.

    sh ./datasets/download_cyclegan_dataset.sh a2b

Available datasets are: apple2orange, summer2winter_yosemite, horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, facades, iphone2dslr_flower, ae_photos

    sh ./datasets/download_pix2pix_dataset.sh xx

Available datasets are night2day, edges2handbags, edges2shoes, facades, maps

The Cityscapes dataset can be downloaded from https://cityscapes-dataset.com. After that, use the script ./datasets/prepare_cityscapes_dataset.py to prepare the dataset.

Training

  • Train the single-modal I2I translation model. Please check run.sh. For instance:
python train.py  \
--dataroot ./datasets/summer2winter \
--name summer2winter \
--model sc \
--gpu_ids 0 \
--lambda_spatial 10 \
--lambda_gradient 0 \
--attn_layers 4,7,9 \
--loss_mode cos \
--gan_mode lsgan \
--display_port 8093 \
--direction BtoA \
--patch_size 64

Testing

  • Test the FID score for all training epochs, please also check run.sh. For instance:
python test_fid.py \
--dataroot ./datasets/horse2zebra \
--checkpoints_dir ./checkpoints \
--name horse2zebra \
--gpu_ids 0 \
--model sc \
--num_test 0
  • Test the KID, cityscape score, D&C, LPIPS, please check run_dc_lpips.sh in evaluations folder. For instance:
python PerceptualSimilarity/lpips_2dirs.py -d0 /data2/gyang/TAGAN/results/summer2winter-F64-mixer/test_350/images/real_B -d1 /data2/gyang/TAGAN/results/summer2winter-F64-mixer/test_350/images/fake_B -o ./example_dists.txt --use_gpu
python3 segment.py test -d ./datasets/cityscapes -c 19 --arch drn_d_22 \
    --pretrained ./drn_d_22_cityscapes.pth --phase val --batch-size 1

Acknowledge

Our code is developed based on FSeSim and unguided. We also thank pytorch-fid for FID computation, LPIPS for diversity score, and D&C for density and coverage evaluation.

Owner
stanley
stanley
Implementation of the state of the art beat-detection, downbeat-detection and tempo-estimation model

The ISMIR 2020 Beat Detection, Downbeat Detection and Tempo Estimation Model Implementation. This is an implementation in TensorFlow to implement the

Koen van den Brink 1 Nov 12, 2021
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022