TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

Related tags

Deep LearningOrthNet
Overview

OrthNet

TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials

1. Installation
2. Usage
3. Polynomials
4. Base Class(Poly)

Installation:

  1. the stable version:
    pip3 install orthnet

  2. the dev version:

git clone https://github.com/orcuslc/orthnet.git && cd orthnet
python3 setup.py build_ext --inplace && python3 setup.py install

Usage:

with TensorFlow

import tensorflow as tf
import numpy as np
from orthnet import Legendre

x_data = np.random.random((10, 2))
x = tf.placeholder(dtype = tf.float32, shape = [None, 2])
L = Legendre(x, 5)

with tf.Session() as sess:
    print(L.tensor, feed_dict = {x: x_data})

with PyTorch

import torch
import numpy as np
from orthnet import Legendre

x = torch.DoubleTensor(np.random.random((10, 2)))
L = Legendre(x, 5)
print(L.tensor)

with Numpy

import numpy as np
from orthnet import Legendre

x = np.random.random((10, 2))
L = Legendre(x, 5)
print(L.tensor)

Specify Backend

In some scenarios, users can specify the exact backend compatible with the input x. The backends provided are:

An example to specify the backend is as follows.

import numpy as np
from orthnet import Legendre, NumpyBackend

x = np.random.random((10, 2))
L = Legendre(x, 5, backend = NumpyBackend())
print(L.tensor)

Specify tensor product combinations

In some scenarios, users may provide pre-computed tensor product combinations to save computing time. An example of providing combinations is as follows.

import numpy as np
from orthnet import Legendre, enum_dim

dim = 2
degree = 5
x = np.random.random((10, dim))
L = Legendre(x, degree, combinations = enum_dim(degree, dim))
print(L.tensor)

Polynomials:

Class Polynomial
orthnet.Legendre(Poly) Legendre polynomial
orthnet.Legendre_Normalized(Poly) Normalized Legendre polynomial
orthnet.Laguerre(Poly) Laguerre polynomial
orthnet.Hermite(Poly) Hermite polynomial of the first kind (in probability theory)
orthnet.Hermite2(Poly) Hermite polynomial of the second kind (in physics)
orthnet.Chebyshev(Poly) Chebyshev polynomial of the first kind
orthnet.Chebyshev2(Poly) Chebyshev polynomial of the second kind
orthnet.Jacobi(Poly, alpha, beta) Jacobi polynomial

Base class:

Class Poly(x, degree, combination = None):

  • Inputs:
    • x a tensor
    • degree highest degree for target polynomials
    • combination optional, tensor product combinations
  • Attributes:
    • Poly.tensor the tensor of function values (with degree from 0 to Poly.degree(included))
    • Poly.length the number of function basis (columns) in Poly.tensor
    • Poly.index the index of the first combination of each degree in Poly.combinations
    • Poly.combinations all combinations of tensor product
    • Poly.tensor_of_degree(degree) return all polynomials of given degrees
    • Poly.eval(coefficients) return the function values with given coefficients
    • Poly.quadrature(function, weight) return Gauss quadrature with given function and weight
You might also like...
A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]  An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

A library to inspect itermediate layers of PyTorch models.
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

 Improving Deep Network Debuggability via Sparse Decision Layers
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Spectral Tensor Train Parameterization of Deep Learning Layers
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

Comments
  • Cuda support

    Cuda support

    Hi,

    First of all thank your for developing this project. Is it possible to create the Jacobi.tensor in the gpu? Currently I am creating the tensor in the cpu and then moving them to gpu, which is time consuming.

    Cheers

    opened by mariolinovIC 1
  • Jacobi polynomial incorrect evaluation

    Jacobi polynomial incorrect evaluation

    Hi, I have noticed than when I evaluate Jacobi polynomial with alpha=1 and beta=1 the results are not ok. Particularly I tried in range (-1,1) and I noticed the problem for n greater than 1 (i.e., 2,3,4). Thank you for your support.

    opened by mariolinovIC 0
Owner
Chuan
+1s.
Chuan
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

CTR-GCN This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The pap

Yuxin Chen 148 Dec 16, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Nerf pl - NeRF (Neural Radiance Fields) and NeRF in the Wild using pytorch-lightning

nerf_pl Update: an improved NSFF implementation to handle dynamic scene is open! Update: NeRF-W (NeRF in the Wild) implementation is added to nerfw br

AI葵 1.8k Dec 30, 2022