[ICCV2021] Official code for "Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition"

Overview

CTR-GCN

This repo is the official implementation for Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition. The paper is accepted to ICCV2021.

Note: We also provide a simple and strong baseline model, which achieves 83.7% on NTU120 CSub with joint modality only, to facilitate the development of skeleton-based action recognition.

Architecture of CTR-GC

image

Prerequisites

  • Python >= 3.6

  • PyTorch >= 1.1.0

  • PyYAML, tqdm, tensorboardX

  • We provide the dependency file of our experimental environment, you can install all dependencies by creating a new anaconda virtual environment and running pip install -r requirements.txt

  • Run pip install -e torchlight

Data Preparation

Download datasets.

There are 3 datasets to download:

  • NTU RGB+D 60 Skeleton
  • NTU RGB+D 120 Skeleton
  • NW-UCLA

NTU RGB+D 60 and 120

  1. Request dataset here: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp
  2. Download the skeleton-only datasets:
    1. nturgbd_skeletons_s001_to_s017.zip (NTU RGB+D 60)
    2. nturgbd_skeletons_s018_to_s032.zip (NTU RGB+D 120)
    3. Extract above files to ./data/nturgbd_raw

NW-UCLA

  1. Download dataset from here
  2. Move all_sqe to ./data/NW-UCLA

Data Processing

Directory Structure

Put downloaded data into the following directory structure:

- data/
  - NW-UCLA/
    - all_sqe
      ... # raw data of NW-UCLA
  - ntu/
  - ntu120/
  - nturgbd_raw/
    - nturgb+d_skeletons/     # from `nturgbd_skeletons_s001_to_s017.zip`
      ...
    - nturgb+d_skeletons120/  # from `nturgbd_skeletons_s018_to_s032.zip`
      ...

Generating Data

  • Generate NTU RGB+D 60 or NTU RGB+D 120 dataset:
 cd ./data/ntu # or cd ./data/ntu120
 # Get skeleton of each performer
 python get_raw_skes_data.py
 # Remove the bad skeleton 
 python get_raw_denoised_data.py
 # Transform the skeleton to the center of the first frame
 python seq_transformation.py

Training & Testing

Training

  • Change the config file depending on what you want.
# Example: training CTRGCN on NTU RGB+D 120 cross subject with GPU 0
python main.py --config config/nturgbd120-cross-subject/default.yaml --work-dir work_dir/ntu120/csub/ctrgcn --device 0
# Example: training provided baseline on NTU RGB+D 120 cross subject
python main.py --config config/nturgbd120-cross-subject/default.yaml --model model.baseline.Model--work-dir work_dir/ntu120/csub/baseline --device 0
  • To train model on NTU RGB+D 60/120 with bone or motion modalities, setting bone or vel arguments in the config file default.yaml or in the command line.
# Example: training CTRGCN on NTU RGB+D 120 cross subject under bone modality
python main.py --config config/nturgbd120-cross-subject/default.yaml --train_feeder_args bone=True --test_feeder_args bone=True --work-dir work_dir/ntu120/csub/ctrgcn_bone --device 0
  • To train model on NW-UCLA with bone or motion modalities, you need to modify data_path in train_feeder_args and test_feeder_args to "bone" or "motion" or "bone motion", and run
python main.py --config config/ucla/default.yaml --work-dir work_dir/ucla/ctrgcn_xxx --device 0
  • To train your own model, put model file your_model.py under ./model and run:
# Example: training your own model on NTU RGB+D 120 cross subject
python main.py --config config/nturgbd120-cross-subject/default.yaml --model model.your_model.Model --work-dir work_dir/ntu120/csub/your_model --device 0

Testing

  • To test the trained models saved in <work_dir>, run the following command:
python main.py --config <work_dir>/config.yaml --work-dir <work_dir> --phase test --save-score True --weights <work_dir>/xxx.pt --device 0
  • To ensemble the results of different modalities, run
# Example: ensemble four modalities of CTRGCN on NTU RGB+D 120 cross subject
python ensemble.py --datasets ntu120/xsub --joint-dir work_dir/ntu120/csub/ctrgcn --bone-dir work_dir/ntu120/csub/ctrgcn_bone --joint-motion-dir work_dir/ntu120/csub/ctrgcn_motion --bone-motion-dir work_dir/ntu120/csub/ctrgcn_bone_motion

Pretrained Models

  • Download pretrained models for producing the final results on NTU RGB+D 60&120 cross subject [Google Drive].
  • Put files to <work_dir> and run Testing command to produce the final result.

Acknowledgements

This repo is based on 2s-AGCN. The data processing is borrowed from SGN and HCN.

Thanks to the original authors for their work!

Citation

Please cite this work if you find it useful:.

@article{chen2021channel,
  title={Channel-wise Topology Refinement Graph Convolution for Skeleton-Based Action Recognition},
  author={Chen, Yuxin and Zhang, Ziqi and Yuan, Chunfeng and Li, Bing and Deng, Ying and Hu, Weiming},
  journal={arXiv preprint arXiv:2107.12213},
  year={2021}
}

Contact

For any questions, feel free to contact: [email protected]

Owner
Yuxin Chen
PhD candidate at the Institute of Automation, Chinese Academy of Sciences.
Yuxin Chen
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022