Deep Learning Package based on TensorFlow

Overview

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license.

The project was started in May 2021 by YeongHyeon Park.
This project does not limit for participation.
Contribute now!

Installation

Dependencies

whiteboxlayer requires:

  • Numpy: 1.18.5
  • Scipy: 1.4.1
  • TensorFlow: 2.3.0

User installation

You can install the white-box-layer via simple command as below.

$ pip install whiteboxlayer

Development

We welcome new contributors of all experience levels. The white-box-layer community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We've included some basic information in this README.

Example

Example for Convolutional Neural Network

An example of constructing a convolutional neural network is covered. The relevant source code is additionally provided following links.

Define TensorFlow based module

class Neuralnet(tf.Module):

    def __init__(self, **kwargs):
        super(Neuralnet, self).__init__()

        self.who_am_i = kwargs['who_am_i']
        self.dim_h = kwargs['dim_h']
        self.dim_w = kwargs['dim_w']
        self.dim_c = kwargs['dim_c']
        self.num_class = kwargs['num_class']
        self.filters = kwargs['filters']

        self.layer = wbl.Layers()

        self.forward = tf.function(self.__call__)

    @tf.function
    def __call__(self, x, verbose=False):

        logit = self.__nn(x=x, name=self.who_am_i, verbose=verbose)
        y_hat = tf.nn.softmax(logit, name="y_hat")

        return logit, y_hat

    def __nn(self, x, name='neuralnet', verbose=True):

        for idx, _ in enumerate(self.filters[:-1]):
            if(idx == 0): continue
            x = self.layer.conv2d(x=x, stride=1, \
                filter_size=[3, 3, self.filters[idx-1], self.filters[idx]], \
                activation='relu', name='%s-%dconv' %(name, idx), verbose=verbose)
            x = self.layer.maxpool(x=x, ksize=2, strides=2, \
                name='%s-%dmp' %(name, idx), verbose=verbose)

        x = tf.reshape(x, shape=[x.shape[0], -1], name="flat")
        x = self.layer.fully_connected(x=x, c_out=self.filters[-1], \
                activation='relu', name="%s-clf0" %(name), verbose=verbose)
        x = self.layer.fully_connected(x=x, c_out=self.num_class, \
                activation=None, name="%s-clf1" %(name), verbose=verbose)

        return x

Initializing module

model = Neuralnet(\
    who_am_i="CNN", \
    dim_h=28, dim_w=28, dim_c=1, \
    num_class=10, \
    filters=[1, 32, 64, 128])

dummy = tf.zeros((1, model.dim_h, model.dim_w, model.dim_c), dtype=tf.float32)
model.forward(x=dummy, verbose=True)

Results

Conv (CNN-1conv) (1, 28, 28, 1) -> (1, 28, 28, 32)
MaxPool (CNN-1mp) (1, 28, 28, 32) > (1, 14, 14, 32)
Conv (CNN-2conv) (1, 14, 14, 32) -> (1, 14, 14, 64)
MaxPool (CNN-2mp) (1, 14, 14, 64) > (1, 7, 7, 64)
FC (CNN-clf0) (1, 3136) -> (1, 128)
FC (CNN-clf1) (1, 128) -> (1, 10)
Conv (CNN-1conv) (1, 28, 28, 1) -> (1, 28, 28, 32)
MaxPool (CNN-1mp) (1, 28, 28, 32) > (1, 14, 14, 32)
Conv (CNN-2conv) (1, 14, 14, 32) -> (1, 14, 14, 64)
MaxPool (CNN-2mp) (1, 14, 14, 64) > (1, 7, 7, 64)
FC (CNN-clf0) (1, 3136) -> (1, 128)
FC (CNN-clf1) (1, 128) -> (1, 10)
You might also like...
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning library featuring a higher-level API for TensorFlow.
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

Deep learning operations reinvented (for pytorch, tensorflow, jax and others)
Deep learning operations reinvented (for pytorch, tensorflow, jax and others)

This video in better quality. einops Flexible and powerful tensor operations for readable and reliable code. Supports numpy, pytorch, tensorflow, and

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Owner
YeongHyeon Park
YeongHyeon Park
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation

SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat

Junfeng Wu 298 Dec 22, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling

⚠️ ‎‎‎ A more recent and actively-maintained version of this code is available in ivadomed Stacked Hourglass Network with a Multi-level Attention Mech

Reza Azad 14 Oct 24, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

DHF1K =========================================================================== Wenguan Wang, J. Shen, M.-M Cheng and A. Borji, Revisiting Video Sal

Wenguan Wang 126 Dec 03, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
A library for uncertainty representation and training in neural networks.

Epistemic Neural Networks A library for uncertainty representation and training in neural networks. Introduction Many applications in deep learning re

DeepMind 211 Dec 12, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
This library is a location of the LegacyLogger for PyTorch Lightning.

neptune-contrib Documentation See neptune-contrib documentation site Installation Get prerequisites python versions 3.5.6/3.6 are supported Install li

neptune.ai 26 Oct 07, 2021