X-modaler is a versatile and high-performance codebase for cross-modal analytics.

Overview

X-modaler

X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules in state-of-the-art vision-language techniques, which are organized in a standardized and user-friendly fashion.

The original paper can be found here.

Installation

See installation instructions.

Requiremenets

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.8 and torchvision that matches the PyTorch installation. Install them together at pytorch.org to make sure of this
  • fvcore
  • pytorch_transformers
  • jsonlines
  • pycocotools

Getting Started

See Getting Started with X-modaler

Training & Evaluation in Command Line

We provide a script in "train_net.py", that is made to train all the configs provided in X-modaler. You may want to use it as a reference to write your own training script.

To train a model(e.g., UpDown) with "train_net.py", first setup the corresponding datasets following datasets, then run:

# Teacher Force
python train_net.py --num-gpus 4 \
 	--config-file configs/image_caption/updown.yaml

# Reinforcement Learning
python train_net.py --num-gpus 4 \
 	--config-file configs/image_caption/updown_rl.yaml

Model Zoo and Baselines

A large set of baseline results and trained models are available here.

Image Captioning
Attention Show, attend and tell: Neural image caption generation with visual attention ICML 2015
LSTM-A3 Boosting image captioning with attributes ICCV 2017
Up-Down Bottom-up and top-down attention for image captioning and visual question answering CVPR 2018
GCN-LSTM Exploring visual relationship for image captioning ECCV 2018
Transformer Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning ACL 2018
Meshed-Memory Meshed-Memory Transformer for Image Captioning CVPR 2020
X-LAN X-Linear Attention Networks for Image Captioning CVPR 2020
Video Captioning
MP-LSTM Translating Videos to Natural Language Using Deep Recurrent Neural Networks NAACL HLT 2015
TA Describing Videos by Exploiting Temporal Structure ICCV 2015
Transformer Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning ACL 2018
TDConvED Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning AAAI 2019
Vision-Language Pretraining
Uniter UNITER: UNiversal Image-TExt Representation Learning ECCV 2020
TDEN Scheduled Sampling in Vision-Language Pretraining with Decoupled Encoder-Decoder Network AAAI 2021

Image Captioning on MSCOCO (Cross-Entropy Loss)

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
LSTM-A3 GoogleDrive 75.3 59.0 45.4 35.0 26.7 55.6 107.7 19.7
Attention GoogleDrive 76.4 60.6 46.9 36.1 27.6 56.6 113.0 20.4
Up-Down GoogleDrive 76.3 60.3 46.6 36.0 27.6 56.6 113.1 20.7
GCN-LSTM GoogleDrive 76.8 61.1 47.6 36.9 28.2 57.2 116.3 21.2
Transformer GoogleDrive 76.4 60.3 46.5 35.8 28.2 56.7 116.6 21.3
Meshed-Memory GoogleDrive 76.3 60.2 46.4 35.6 28.1 56.5 116.0 21.2
X-LAN GoogleDrive 77.5 61.9 48.3 37.5 28.6 57.6 120.7 21.9
TDEN GoogleDrive 75.5 59.4 45.7 34.9 28.7 56.7 116.3 22.0

Image Captioning on MSCOCO (CIDEr Score Optimization)

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
LSTM-A3 GoogleDrive 77.9 61.5 46.7 35.0 27.1 56.3 117.0 20.5
Attention GoogleDrive 79.4 63.5 48.9 37.1 27.9 57.6 123.1 21.3
Up-Down GoogleDrive 80.1 64.3 49.7 37.7 28.0 58.0 124.7 21.5
GCN-LSTM GoogleDrive 80.2 64.7 50.3 38.5 28.5 58.4 127.2 22.1
Transformer GoogleDrive 80.5 65.4 51.1 39.2 29.1 58.7 130.0 23.0
Meshed-Memory GoogleDrive 80.7 65.5 51.4 39.6 29.2 58.9 131.1 22.9
X-LAN GoogleDrive 80.4 65.2 51.0 39.2 29.4 59.0 131.0 23.2
TDEN GoogleDrive 81.3 66.3 52.0 40.1 29.6 59.8 132.6 23.4

Video Captioning on MSVD

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
MP-LSTM GoogleDrive 77.0 65.6 56.9 48.1 32.4 68.1 73.1 4.8
TA GoogleDrive 80.4 68.9 60.1 51.0 33.5 70.0 77.2 4.9
Transformer GoogleDrive 79.0 67.6 58.5 49.4 33.3 68.7 80.3 4.9
TDConvED GoogleDrive 81.6 70.4 61.3 51.7 34.1 70.4 77.8 5.0

Video Captioning on MSR-VTT

Name Model [email protected] [email protected] [email protected] [email protected] METEOR ROUGE-L CIDEr-D SPICE
MP-LSTM GoogleDrive 73.6 60.8 49.0 38.6 26.0 58.3 41.1 5.6
TA GoogleDrive 74.3 61.8 50.3 39.9 26.4 59.4 42.9 5.8
Transformer GoogleDrive 75.4 62.3 50.0 39.2 26.5 58.7 44.0 5.9
TDConvED GoogleDrive 76.4 62.3 49.9 38.9 26.3 59.0 40.7 5.7

Visual Question Answering

Name Model Overall Yes/No Number Other
Uniter GoogleDrive 70.1 86.8 53.7 59.6
TDEN GoogleDrive 71.9 88.3 54.3 62.0

Caption-based image retrieval on Flickr30k

Name Model R1 R5 R10
Uniter GoogleDrive 61.6 87.7 92.8
TDEN GoogleDrive 62.0 86.6 92.4

Visual commonsense reasoning

Name Model Q -> A QA -> R Q -> AR
Uniter GoogleDrive 73.0 75.3 55.4
TDEN GoogleDrive 75.0 76.5 57.7

License

X-modaler is released under the Apache License, Version 2.0.

Citing X-modaler

If you use X-modaler in your research, please use the following BibTeX entry.

@inproceedings{Xmodaler2021,
  author =       {Yehao Li, Yingwei Pan, Jingwen Chen, Ting Yao, and Tao Mei},
  title =        {X-modaler: A Versatile and High-performance Codebase for Cross-modal Analytics},
  booktitle =    {Proceedings of the 29th ACM international conference on Multimedia},
  year =         {2021}
}
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
CLEAR algorithm for multi-view data association

CLEAR: Consistent Lifting, Embedding, and Alignment Rectification Algorithm The Matlab, Python, and C++ implementation of the CLEAR algorithm, as desc

MIT Aerospace Controls Laboratory 30 Jan 02, 2023
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
[ICML 2021] Towards Understanding and Mitigating Social Biases in Language Models

Towards Understanding and Mitigating Social Biases in Language Models This repo contains code and data for evaluating and mitigating bias from generat

Paul Liang 42 Jan 03, 2023
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022