MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

Related tags

Deep LearningMetaTTE
Overview

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

This is the official TensorFlow implementation of MetaTTE in the manuscript.

Core Requirements

  • tensorflow~=2.3.0
  • numpy~=1.18.4
  • spektral~=0.6.1
  • pandas~=1.0.3
  • tqdm~=4.46.0
  • opencv-python~=4.3.0.36
  • matplotlib~=3.2.1
  • Pillow~=7.1.2
  • scipy~=1.4.1

All Dependencies can be installed using the following command:

pip install -r requirements.txt

Data Preparation

We here provide the datasets we adopted in this paper with Google Drive. After downloading the zip file, please extract all the files in data directory to the data folder in this project.

Download Link: Download

Configuration

We here list a sample of our config file, and leave the comments for explanation. \ (Please DO NOT include the comments in config files)

[General]
mode = train
# Specify the absoulute path of training, validation and testing files
train_files = ./data/chengdu/train.npy,./data/porto/train.npy
val_files = ./data/chengdu/val.npy,./data/porto/val.npy
test_files = ./data/chengdu/test.npy,./data/porto/test.npy
# Specify the batch size
batch_size = 32
# Specify the number for GPU
gpu = 7
# Specify the unique label for each experiment
prefix = tte_exp_64_gru

[Model]
# Specify the inner learning rate
learning_rate = 1e-2
# Specify the inner reduce rate of learning rate
lr_reduce = 0.5
# Specify the maximum iteration
epoch = 500000
# Specify the k shot
inner_k = 10
# Specify the outer step size
outer_step_size = 0.1
# Specify the model according to the class name
model = MSMTTEGRUAttModel
# Specify the dataset according to the class name
dataset = MyDifferDatasetWithEmbedding
# Specify the dataloader according to the class name
dataloader = MyDataLoaderWithEmbedding


# mean, standard deviation for latitudes, longitudes and travel time (Chengdu is before the comma while Porto is after the comma)
[Statistics]
lat_means = 30.651168872309235,41.16060653954797
lng_means = 104.06000501543934,-8.61946359614912
lat_stds = 0.039222931811691585,0.02315827641949562
lng_stds = 0.045337940910596744,0.029208656457667292
labels_means = 1088.0075248390972,691.2889878452086
labels_stds = 1315.707363003298,347.4765869900725

Model Training

Here are commands for training the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Eval baseline methods

Here are commands for testing the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Citation

We currently do not provide citations.

Owner
morningstarwang
Research assistant in ICT, P.h.D candidate in BUPT, Consultant in HBY, and Advisor in Path Academics.
morningstarwang
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
PyQt6 configuration in yaml format providing the most simple script.

PyamlQt(ぴゃむるきゅーと) PyQt6 configuration in yaml format providing the most simple script. Requirements yaml PyQt6, ( PyQt5 ) Installation pip install Pya

Ar-Ray 7 Aug 15, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
Jigsaw Rate Severity of Toxic Comments

Jigsaw Rate Severity of Toxic Comments

Guanshuo Xu 66 Nov 30, 2022
Simple torch.nn.module implementation of Alias-Free-GAN style filter and resample

Alias-Free-Torch Simple torch module implementation of Alias-Free GAN. This repository including Alias-Free GAN style lowpass sinc filter @filter.py A

이준혁(Junhyeok Lee) 64 Dec 22, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022