MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

Related tags

Deep LearningMetaTTE
Overview

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

This is the official TensorFlow implementation of MetaTTE in the manuscript.

Core Requirements

  • tensorflow~=2.3.0
  • numpy~=1.18.4
  • spektral~=0.6.1
  • pandas~=1.0.3
  • tqdm~=4.46.0
  • opencv-python~=4.3.0.36
  • matplotlib~=3.2.1
  • Pillow~=7.1.2
  • scipy~=1.4.1

All Dependencies can be installed using the following command:

pip install -r requirements.txt

Data Preparation

We here provide the datasets we adopted in this paper with Google Drive. After downloading the zip file, please extract all the files in data directory to the data folder in this project.

Download Link: Download

Configuration

We here list a sample of our config file, and leave the comments for explanation. \ (Please DO NOT include the comments in config files)

[General]
mode = train
# Specify the absoulute path of training, validation and testing files
train_files = ./data/chengdu/train.npy,./data/porto/train.npy
val_files = ./data/chengdu/val.npy,./data/porto/val.npy
test_files = ./data/chengdu/test.npy,./data/porto/test.npy
# Specify the batch size
batch_size = 32
# Specify the number for GPU
gpu = 7
# Specify the unique label for each experiment
prefix = tte_exp_64_gru

[Model]
# Specify the inner learning rate
learning_rate = 1e-2
# Specify the inner reduce rate of learning rate
lr_reduce = 0.5
# Specify the maximum iteration
epoch = 500000
# Specify the k shot
inner_k = 10
# Specify the outer step size
outer_step_size = 0.1
# Specify the model according to the class name
model = MSMTTEGRUAttModel
# Specify the dataset according to the class name
dataset = MyDifferDatasetWithEmbedding
# Specify the dataloader according to the class name
dataloader = MyDataLoaderWithEmbedding


# mean, standard deviation for latitudes, longitudes and travel time (Chengdu is before the comma while Porto is after the comma)
[Statistics]
lat_means = 30.651168872309235,41.16060653954797
lng_means = 104.06000501543934,-8.61946359614912
lat_stds = 0.039222931811691585,0.02315827641949562
lng_stds = 0.045337940910596744,0.029208656457667292
labels_means = 1088.0075248390972,691.2889878452086
labels_stds = 1315.707363003298,347.4765869900725

Model Training

Here are commands for training the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Eval baseline methods

Here are commands for testing the model on both Chengdu and Porto tasks.

python main.py --config=./experiments/finetuning/64/gru.conf

Citation

We currently do not provide citations.

Owner
morningstarwang
Research assistant in ICT, P.h.D candidate in BUPT, Consultant in HBY, and Advisor in Path Academics.
morningstarwang
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022