REBEL: Relation Extraction By End-to-end Language generation

Related tags

Deep Learningrebel
Overview

PWC PWC PWC PWC PWC

REBEL: Relation Extraction By End-to-end Language generation

This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By End-to-end Language generation. We present a new linearization aproach and a reframing of Relation Extraction as a seq2seq task. The paper can be found here. If you use the code, please reference this work in your paper:

@inproceedings{huguet-cabot-navigli-2021-rebel,
title = "REBEL: Relation Extraction By End-to-end Language generation",
author = "Huguet Cabot, Pere-Llu{\'\i}s  and
  Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf",
}
Repo structure
| conf  # contains Hydra config files
  | data
  | model
  | train
  root.yaml  # hydra root config file
| data  # data
| datasets  # datasets scripts
| model # model files should be stored here
| src
  | pl_data_modules.py  # LightinigDataModule
  | pl_modules.py  # LightningModule
  | train.py  # main script for training the network
  | test.py  # main script for training the network
| README.md
| requirements.txt
| demo.py # Streamlit demo to try out the model
| setup.sh # environment setup script 

Initialize environment

In order to set up the python interpreter we utilize conda , the script setup.sh creates a conda environment and install pytorch and the dependencies in "requirements.txt".

REBEL Model and Dataset

Model and Dataset files can be downloaded here:

https://osf.io/4x3r9/?view_only=87e7af84c0564bd1b3eadff23e4b7e54

Or you can directly use the model from Huggingface repo:

https://huggingface.co/Babelscape/rebel-large

", "").replace(" ", "").replace("", "").split(): if token == " ": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) relation = '' subject = '' elif token == " ": current = 's' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) object_ = '' elif token == " ": current = 'o' relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) return triplets extracted_triplets = extract_triplets(extracted_text[0]) print(extracted_triplets) ">
from transformers import pipeline

triplet_extractor = pipeline('text2text-generation', model='Babelscape/rebel-large', tokenizer='Babelscape/rebel-large')

# We need to use the tokenizer manually since we need special tokens.
extracted_text = triplet_extractor.tokenizer.batch_decode(triplet_extractor("Punta Cana is a resort town in the municipality of Higuey, in La Altagracia Province, the eastern most province of the Dominican Republic", return_tensors=True, return_text=False)[0]["generated_token_ids"]["output_ids"])

print(extracted_text[0])

# Function to parse the generated text and extract the triplets
def extract_triplets(text):
    triplets = []
    relation, subject, relation, object_ = '', '', '', ''
    text = text.strip()
    current = 'x'
    for token in text.replace("", "").replace("
        
         "
        , "").replace("", "").split():
        if token == "
       
        "
       :
            current = 't'
            if relation != '':
                triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
                relation = ''
            subject = ''
        elif token == "
       
        "
       :
            current = 's'
            if relation != '':
                triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
            object_ = ''
        elif token == "
       
        "
       :
            current = 'o'
            relation = ''
        else:
            if current == 't':
                subject += ' ' + token
            elif current == 's':
                object_ += ' ' + token
            elif current == 'o':
                relation += ' ' + token
    if subject != '' and relation != '' and object_ != '':
        triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
    return triplets
extracted_triplets = extract_triplets(extracted_text[0])
print(extracted_triplets)

CROCODILE: automatiC RelatiOn extraCtiOn Dataset wIth nLi filtEring.

REBEL dataset can be recreated using our RE dataset creator CROCODILE

Training and testing

There are conf files to train and test each model. Within the src folder to train for CONLL04 for instance:

train.py model=rebel_model data=conll04_data train=conll04_train

Once the model is trained, the checkpoint can be evaluated by running:

test.py model=rebel_model data=conll04_data train=conll04_train do_predict=True checkpoint_path="path_to_checkpoint"

src/model_saving.py can be used to convert a pytorch lightning checkpoint into the hf transformers format for model and tokenizer.

DEMO

We suggest running the demo to test REBEL. Once the model files are unzipped in the model folder run:

streamlit run demo.py

And a demo will be available in the browser. It accepts free input as well as data from the sample file in data/rebel/

Datasets

TACRED is not freely avialable but instructions on how to create Re-TACRED from it can be found here.

For CONLL04 and ADE one can use the script from the SpERT github.

For NYT the dataset can be downloaded from Copy_RE github.

Finally the DocRED for RE can be downloaded at the JEREX github

Owner
Babelscape
Babelscape is a deep tech company founded in 2016 focused on multilingual Natural Language Processing.
Babelscape
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Evolutionary Scale Modeling (esm): Pretrained language models for proteins

Evolutionary Scale Modeling This repository contains code and pre-trained weights for Transformer protein language models from Facebook AI Research, i

Meta Research 1.6k Jan 09, 2023
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022