REBEL: Relation Extraction By End-to-end Language generation

Related tags

Deep Learningrebel
Overview

PWC PWC PWC PWC PWC

REBEL: Relation Extraction By End-to-end Language generation

This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By End-to-end Language generation. We present a new linearization aproach and a reframing of Relation Extraction as a seq2seq task. The paper can be found here. If you use the code, please reference this work in your paper:

@inproceedings{huguet-cabot-navigli-2021-rebel,
title = "REBEL: Relation Extraction By End-to-end Language generation",
author = "Huguet Cabot, Pere-Llu{\'\i}s  and
  Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Online and in the Barceló Bávaro Convention Centre, Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf",
}
Repo structure
| conf  # contains Hydra config files
  | data
  | model
  | train
  root.yaml  # hydra root config file
| data  # data
| datasets  # datasets scripts
| model # model files should be stored here
| src
  | pl_data_modules.py  # LightinigDataModule
  | pl_modules.py  # LightningModule
  | train.py  # main script for training the network
  | test.py  # main script for training the network
| README.md
| requirements.txt
| demo.py # Streamlit demo to try out the model
| setup.sh # environment setup script 

Initialize environment

In order to set up the python interpreter we utilize conda , the script setup.sh creates a conda environment and install pytorch and the dependencies in "requirements.txt".

REBEL Model and Dataset

Model and Dataset files can be downloaded here:

https://osf.io/4x3r9/?view_only=87e7af84c0564bd1b3eadff23e4b7e54

Or you can directly use the model from Huggingface repo:

https://huggingface.co/Babelscape/rebel-large

", "").replace(" ", "").replace("", "").split(): if token == " ": current = 't' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) relation = '' subject = '' elif token == " ": current = 's' if relation != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) object_ = '' elif token == " ": current = 'o' relation = '' else: if current == 't': subject += ' ' + token elif current == 's': object_ += ' ' + token elif current == 'o': relation += ' ' + token if subject != '' and relation != '' and object_ != '': triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()}) return triplets extracted_triplets = extract_triplets(extracted_text[0]) print(extracted_triplets) ">
from transformers import pipeline

triplet_extractor = pipeline('text2text-generation', model='Babelscape/rebel-large', tokenizer='Babelscape/rebel-large')

# We need to use the tokenizer manually since we need special tokens.
extracted_text = triplet_extractor.tokenizer.batch_decode(triplet_extractor("Punta Cana is a resort town in the municipality of Higuey, in La Altagracia Province, the eastern most province of the Dominican Republic", return_tensors=True, return_text=False)[0]["generated_token_ids"]["output_ids"])

print(extracted_text[0])

# Function to parse the generated text and extract the triplets
def extract_triplets(text):
    triplets = []
    relation, subject, relation, object_ = '', '', '', ''
    text = text.strip()
    current = 'x'
    for token in text.replace("", "").replace("
        
         "
        , "").replace("", "").split():
        if token == "
       
        "
       :
            current = 't'
            if relation != '':
                triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
                relation = ''
            subject = ''
        elif token == "
       
        "
       :
            current = 's'
            if relation != '':
                triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
            object_ = ''
        elif token == "
       
        "
       :
            current = 'o'
            relation = ''
        else:
            if current == 't':
                subject += ' ' + token
            elif current == 's':
                object_ += ' ' + token
            elif current == 'o':
                relation += ' ' + token
    if subject != '' and relation != '' and object_ != '':
        triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
    return triplets
extracted_triplets = extract_triplets(extracted_text[0])
print(extracted_triplets)

CROCODILE: automatiC RelatiOn extraCtiOn Dataset wIth nLi filtEring.

REBEL dataset can be recreated using our RE dataset creator CROCODILE

Training and testing

There are conf files to train and test each model. Within the src folder to train for CONLL04 for instance:

train.py model=rebel_model data=conll04_data train=conll04_train

Once the model is trained, the checkpoint can be evaluated by running:

test.py model=rebel_model data=conll04_data train=conll04_train do_predict=True checkpoint_path="path_to_checkpoint"

src/model_saving.py can be used to convert a pytorch lightning checkpoint into the hf transformers format for model and tokenizer.

DEMO

We suggest running the demo to test REBEL. Once the model files are unzipped in the model folder run:

streamlit run demo.py

And a demo will be available in the browser. It accepts free input as well as data from the sample file in data/rebel/

Datasets

TACRED is not freely avialable but instructions on how to create Re-TACRED from it can be found here.

For CONLL04 and ADE one can use the script from the SpERT github.

For NYT the dataset can be downloaded from Copy_RE github.

Finally the DocRED for RE can be downloaded at the JEREX github

Owner
Babelscape
Babelscape is a deep tech company founded in 2016 focused on multilingual Natural Language Processing.
Babelscape
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022