Python Wrapper for Embree

Related tags

Deep Learningpyembree
Overview

pyembree

Python Wrapper for Embree

Installation

You can install pyembree (and embree) via the conda-forge package.

$ conda install -c conda-forge pyembree

Suppressing errors

Creating multiple scenes produces some harmless error messages:

ERROR CAUGHT IN EMBREE
ERROR: Invalid operation
ERROR MESSAGE: b'already initialized'

These can be suppressed with:

import logging
logging.getLogger('pyembree').disabled = True
Comments
  • Enhancement PR

    Enhancement PR

    This PR does the following things

    • Performed typo refactoring in pyx files
    • Updated to newer Embree API (2.) . Embree 3.0 is being developed...
    • Added the possibility to export all embree results when performing request
    • Added 12 new tests run from nosetests, activated them in travis
    • Run examples in travis

    One can discuss each point...

    opened by Gjacquenot 10
  • install info

    install info

    Hi,

    Thanks for making this git. Could you give some more details on how to install Pyembree?

    In Ubuntu command line, I insert sudo python setup.py install

    But there is some missing folder embree2 appartently... Or do I first have to install and compile embree itself?

    Best regards, Arne

    opened by avlonder 4
  • Fixed an attribute in trianges.pyx that prevents compilation

    Fixed an attribute in trianges.pyx that prevents compilation

    I have updated a trianges.pyx since it is using a missing attribute.

    I guess one wants RTC_GEOMETRY_STATIC instead of RTCGEOMETRY_STATIC.

    https://github.com/embree/embree/blob/90e49f243703877c7714814d6eaa5aa3422a5839/include/embree2/rtcore_geometry.h#L72

    The original error log is presented here

    D:\Embree\pyembree>python setup.py build
    Please put "# distutils: language=c++" in your .pyx or .pxd file(s)
    Compiling pyembree\trianges.pyx because it changed.
    [1/1] Cythonizing pyembree\trianges.pyx
    
    Error compiling Cython file:
    ------------------------------------------------------------
    ...
    def run_triangles():
        pass
    
    cdef unsigned int addCube(rtcs.RTCScene scene_i):
        cdef unsigned int mesh = rtcg.rtcNewTriangleMesh(scene_i,
                    rtcg.RTCGEOMETRY_STATIC, 12, 8, 1)
                       ^
    ------------------------------------------------------------
    
    pyembree\trianges.pyx:19:20: cimported module has no attribute 'RTCGEOMETRY_STATIC'
    Traceback (most recent call last):
      File "setup.py", line 11, in <module>
        include_path=include_path)
      File "C:\Program Files\Python36\lib\site-packages\Cython\Build\Dependencies.py", line 1039, in cythonize
        cythonize_one(*args)
      File "C:\Program Files\Python36\lib\site-packages\Cython\Build\Dependencies.py", line 1161, in cythonize_one
        raise CompileError(None, pyx_file)
    Cython.Compiler.Errors.CompileError: pyembree\trianges.pyx
    
    opened by Gjacquenot 3
  • Building Pyembree for use in AWS Lambda

    Building Pyembree for use in AWS Lambda

    I'd like to run Pyembree in an AWS Lambda function (via a Lambda 'Layer'), which means Embree will be located in /opt/python/embree. I'm having a bit of trouble configuring Pyembree to expect Embree in this location.

    This is what I've tried so far (cobbled together from this script and this comment) to build the environment:

    sudo amazon-linux-extras install python3.8
    sudo yum install python38-devel gcc gcc-c++
    wget https://github.com/embree/embree/releases/download/v2.17.7/embree-2.17.7.x86_64.linux.tar.gz -O /tmp/embree.tar.gz -nv
    sudo mkdir /opt/python/embree
    sudo tar -xzf /tmp/embree.tar.gz --strip-components=1 -C /opt/python/embree
    sudo pip3.8 install --no-cache-dir numpy cython
    wget https://github.com/scopatz/pyembree/releases/download/0.1.6/pyembree-0.1.6.tar.gz
    tar xf pyembree-0.1.6.tar.gz
    sed -i -e 's/embree2/\/opt\/python\/embree\/include\/embree2/g' pyembree-0.1.6/pyembree/*
    tar czf pyembree-0.1.6.tar.gz pyembree-0.1.6
    sudo pip3.8 install --global-option=build_ext --global-option="-I/opt/python/embree/include" --global-option="-L/opt/python/embree/lib" --target=/opt/python pyembree-0.1.6.tar.gz
    

    This seems to build without problem and puts Embree and Pyembree in /opt/python. If I cd into /opt/python and run Python, I can import Pyembree, but the build can't find libembree.so.2:

    Python 3.8.5 (default, Feb 18 2021, 01:24:20)
    [GCC 7.3.1 20180712 (Red Hat 7.3.1-12)] on linux
    Type "help", "copyright", "credits" or "license" for more information.
    >>> import pyembree
    >>> from pyembree import rtcore_scene as rtcs
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ImportError: libembree.so.2: cannot open shared object file: No such file or directory
    

    Any idea what else I should try? I'm not sure if I should be replacing embree2 with opt/python/embree/include/embree2 before building the pxd/pyx files, for example. I've also tried altering setup.py to: include_path = [np.get_include(), "/opt/python/embree/include", "/opt/python/embree/lib"].

    Any pointers very welcome!

    opened by dt99jay 1
  • segfault in destructor

    segfault in destructor

    Thanks for the great package! In a trimesh issue someone posted a backtrace that looked like it was occurring in the pyembree destructor, I was wondering if you'd ever seen anything similar?

    Thread 1 "python" received signal SIGSEGV, Segmentation fault.
    0x0000000000000000 in ?? ()
    (gdb) py-bt
    Traceback (most recent call first):
    (gdb) bt
    #0  0x0000000000000000 in ?? ()
    #1  0x00007fffd8ab7c30 in embree::avx::TriangleMeshISA::~TriangleMeshISA() ()
       from /usr/local/lib/libembree.so.2
    #2  0x00007fffd850002f in embree::Scene::~Scene() ()
       from /usr/local/lib/libembree.so.2
    #3  0x00007fffd8500179 in embree::Scene::~Scene() ()
       from /usr/local/lib/libembree.so.2
    #4  0x00007fffd84c3cc5 in rtcDeleteScene () from /usr/local/lib/libembree.so.2
    #5  0x00007fffd992474c in __pyx_pf_8pyembree_12rtcore_scene_11EmbreeScene_4__dealloc__ (__pyx_v_self=0x7fffd3166490) at pyembree/rtcore_scene.cpp:3434
    #6  __pyx_pw_8pyembree_12rtcore_scene_11EmbreeScene_5__dealloc__ (
        __pyx_v_self=<pyembree.rtcore_scene.EmbreeScene at remote 0x7fffd3166490>)
        at pyembree/rtcore_scene.cpp:3419
    #7  __pyx_tp_dealloc_8pyembree_12rtcore_scene_EmbreeScene (
        o=<pyembree.rtcore_scene.EmbreeScene at remote 0x7fffd3166490>)
        at pyembree/rtcore_scene.cpp:6042
    #8  0x00000000004fc70f in PyDict_Clear () at ../Objects/dictobject.c:946
    #9  0x00000000005419b9 in dict_tp_clear.lto_priv.332 (op=<optimized out>)
        at ../Objects/dictobject.c:2152
    #10 0x000000000049ca0f in delete_garbage (
        old=0x8fa280 <generations.lto_priv+96>, collectable=0x7fffffffdb40)
        at ../Modules/gcmodule.c:820
    #11 collect.lto_priv () at ../Modules/gcmodule.c:984
    ---Type <return> to continue, or q <return> to quit---
    #12 0x00000000004f9ade in PyGC_Collect () at ../Modules/gcmodule.c:1440
    #13 0x00000000004f8d7f in Py_Finalize () at ../Python/pythonrun.c:448
    #14 0x00000000004936f2 in Py_Main () at ../Modules/main.c:665
    #15 0x00007ffff7810830 in __libc_start_main (main=0x4932b0 <main>, argc=2, 
        argv=0x7fffffffddd8, init=<optimized out>, fini=<optimized out>, 
        rtld_fini=<optimized out>, stack_end=0x7fffffffddc8)
        at ../csu/libc-start.c:291
    #16 0x00000000004931d9 in _start ()
    
    opened by mikedh 1
  • Add distance query type

    Add distance query type

    Using the output dict to get the distance to the intersection is very slow. So I added a new query type, distance, which returns just the distance to the hit.

    opened by dwastberg 1
  • multiple scenes

    multiple scenes

    Hi, thanks for the great library!

    Someone opened an issue on trimesh about the errors that get printed when you allocate multiple scenes. It's not really a functional problem as pyembree still returns the correct result, I was wondering if there was a procedure or destructor I could call to suppress these warnings?

    import numpy as np
    
    from pyembree import rtcore_scene
    from pyembree.mesh_construction import TriangleMesh
    
    if __name__ == '__main__':
         triangles_a = np.random.random((10,3,3))
         scene_a = rtcore_scene.EmbreeScene()
         mesh_a = TriangleMesh(scene_a, triangles_a)
    
         # do something to deallocate here?
    
         triangles_b = np.random.random((10,3,3))
         scene_b = rtcore_scene.EmbreeScene()
         mesh_b = TriangleMesh(scene_b, triangles_b)
    

    produces this warning:

    ERROR CAUGHT IN EMBREE
    ERROR: Invalid operation
    ERROR MESSAGE: b'/home/benthin/Projects/embree_v251/kernels/common/rtcore.cpp (157): already initialized'
    

    Best, Mike

    opened by mikedh 1
  • These ctypedefs should define function pointers

    These ctypedefs should define function pointers

    in the same way as RTCFilterFunc in rtcore_geometry.pyx. This allows me to set custom intersection functions from cython code, in the same way that you already can with filter feedback functions:

        from mesh_intersection cimport patchIntersectFunc
        cimport pyembree.rtcore_geometry_user as rtcgu
        .
        .
        .
        rtcgu.rtcSetIntersectFunction(scene, geomID, <rtcgu.RTCIntersectFunc> patchIntersectFunc)
    
    opened by atmyers 1
  • Implementing additional mesh types in mesh_construction.pyx

    Implementing additional mesh types in mesh_construction.pyx

    This pull request adds support for creating hexahedral and tetrahedral meshes. It also implements creating triangular meshes using an indices array as well as a vertices array.

    enhancement 
    opened by atmyers 1
  • Apple Silicion Support

    Apple Silicion Support

    Since Embree 3.13.0 (https://github.com/embree/embree/releases/tag/v3.13.0) Apple Silicon is supported with Embree. pyembree should be updated to support it. Also see: https://github.com/scopatz/pyembree/issues/28

    opened by trologat 0
  • Conflict found when installing pyembree in Python3.9

    Conflict found when installing pyembree in Python3.9

    Hi, when attempting to install pyembree in a Python3.9 environment I get an error due to incompatible packages (see code below). This was tested on a MacBook Pro (2017) running macOS 10.14.6. Is there any way to resolve this?

    $ conda create --name python3.9 -c conda-forge python=3.9 pyembree
    Collecting package metadata (current_repodata.json): done
    Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
    Collecting package metadata (repodata.json): done
    Solving environment: |
    Found conflicts! Looking for incompatible packages.
    This can take several minutes.  Press CTRL-C to abort.
    failed
    
    UnsatisfiableError: The following specifications were found to be incompatible with each other:
    
    Output in format: Requested package -> Available versions
    
    Package python conflicts for:
    python=3.9
    pyembree -> numpy[version='>=1.18.1,<2.0a0'] -> python[version='3.7.*|3.8.*|>=3.9,<3.10.0a0']
    pyembree -> python[version='2.7.*|3.5.*|3.6.*|>=2.7,<2.8.0a0|>=3.6,<3.7.0a0|>=3.8,<3.9.0a0|>=3.7,<3.8.0a0|>=3.5,<3.6.0a0|3.4.*']
    
    opened by ReinderVosDeWael 0
  • Dead link in the docstring of ElementMesh

    Dead link in the docstring of ElementMesh

    https://github.com/scopatz/pyembree/blob/master/pyembree/mesh_construction.pyx#L158 This link seems to be dead. I suppose that the node ordering is something like [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]] for a unit cube, right?

    [edit] same here: https://github.com/scopatz/pyembree/blob/master/pyembree/mesh_construction.h#L4

    opened by nai62 0
Releases(0.1.6)
Owner
Anthony Scopatz
Anthony Scopatz
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022