[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Related tags

Deep LearningMCL
Overview

Mutual Contrastive Learning for Visual Representation Learning

This project provides source code for our Mutual Contrastive Learning for Visual Representation Learning (MCL).

Installation

Requirements

Ubuntu 18.04 LTS

Python 3.8 (Anaconda is recommended)

CUDA 11.1

PyTorch 1.7.0

NCCL for CUDA 11.1

Supervised Learning on CIFAR-100 dataset

Dataset

CIFAR-100 : download

unzip to the ./data folder

Training two baseline networks

python main_cifar.py --arch resnet32 --number-net 2

More commands for training various architectures can be found in scripts/train_cifar_baseline.sh

Training two networks by MCL

python main_cifar.py --arch resnet32  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_cifar_mcl.sh

Results of MCL on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-32 70.91±0.14 72.96±0.28 74.04±0.07
ResNet-56 73.15±0.23 74.48±0.23 75.74±0.16
ResNet-110 75.29±0.16 77.12±0.20 78.82±0.14
WRN-16-2 72.55±0.24 74.56±0.11 75.79±0.07
WRN-40-2 76.89±0.29 77.51±0.42 78.84±0.22
HCGNet-A1 77.42±0.16 78.62±0.26 79.50±0.15
ShuffleNetV2 0.5× 67.39±0.35 69.55±0.22 70.92±0.28
ShuffleNetV2 1× 70.93±0.24 73.26±0.18 75.18±0.25

Training multiple networks by MCL combined with Logit distillation

python main_cifar.py --arch WRN_16_2  --number-net 4 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. \
    --logit-distill

More commands for training various architectures can be found in scripts/train_cifar_mcl_logit.sh

Results of MCL combined with logit distillation on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×4)+Logit KD
WRN-16-2 72.55±0.24 76.34±0.22
WRN-40-2 76.89±0.29 80.02±0.45
WRN-28-4 79.17±0.29 81.68±0.31
ShuffleNetV2 1× 70.93±0.24 77.02±0.32
HCGNet-A2 79.00±0.41 82.47±0.20

Supervised Learning on ImageNet dataset

Dataset preparation

  • Download the ImageNet dataset to YOUR_IMAGENET_PATH and move validation images to labeled subfolders

  • Create a datasets subfolder and a symlink to the ImageNet dataset

$ ln -s PATH_TO_YOUR_IMAGENET ./data/

Folder of ImageNet Dataset:

data/ImageNet
├── train
├── val

Training two networks by MCL

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-18 69.76 70.32 70.77
ResNet-34 73.30 74.13 74.34

Training two networks by MCL combined with logit distillation

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL combined with logit distillation on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×4)+Logit KD
ResNet-18 69.76 70.82

Self-Supervised Learning on ImageNet dataset

Apply MCL(×2) to MoCo

python main_moco_mcl.py \
  -a resnet18 \
  --lr 0.03 \
  --batch-size 256 \
  --number-net 2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Linear Classification

python main_lincls.py \
  -a resnet18 \
  --lr 30.0 \
  --batch-size 256 \
  --pretrained [your checkpoint path]/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Results of applying MCL to MoCo on ImageNet

We perform all experiments on 8 NVIDIA RTX 3090 GPUs with three runs.

Network Baseline MCL(×2)
ResNet-18 47.45±0.11 48.04±0.13

Citation

@inproceedings{yang2022mcl,
  title={Mutual Contrastive Learning for Visual Representation Learning},
  author={Chuanguang Yang, Zhulin An, Linhang Cai, Yongjun Xu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}
Owner
winycg
winycg
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking

SPLADE 🍴 + 🥄 = 🔎 This repository contains the weights for four models as well as the code for running inference for our two papers: [v1]: SPLADE: S

NAVER 170 Dec 28, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Matthew Colbrook 1 Apr 08, 2022