Official implementation of "Generating 3D Molecules for Target Protein Binding"

Related tags

Deep LearningGraphBP
Overview

Generating 3D Molecules for Target Protein Binding

This is the official implementation of the GraphBP method proposed in the following paper.

Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. "Generating 3D Molecules for Target Protein Binding".

Requirements

We include key dependencies below. The versions we used are in the parentheses. Our detailed environmental setup is available in environment.yml.

  • PyTorch (1.9.0)
  • PyTorch Geometric (1.7.2)
  • rdkit-pypi (2021.9.3)
  • biopython (1.79)
  • openbabel (3.3.1)

Preparing Data

  • Download and extract the CrossDocked2020 dataset:
wget https://bits.csb.pitt.edu/files/crossdock2020/CrossDocked2020_v1.1.tgz -P data/crossdock2020/
tar -C data/crossdock2020/ -xzf data/crossdock2020/CrossDocked2020_v1.1.tgz
wget https://bits.csb.pitt.edu/files/it2_tt_0_lowrmsd_mols_train0_fixed.types -P data/crossdock2020/
wget https://bits.csb.pitt.edu/files/it2_tt_0_lowrmsd_mols_test0_fixed.types -P data/crossdock2020/

Note: (1) The unzipping process could take a lot of time. Unzipping on SSD is much faster!!! (2) Several samples in the training set cannot be processed by our code. Hence, we recommend replacing the it2_tt_0_lowrmsd_mols_train0_fixed.types file with a new one, where these samples are deleted. The new one is available here.

  • Split data files:
python scripts/split_sdf.py data/crossdock2020/it2_tt_0_lowrmsd_mols_train0_fixed.types data/crossdock2020
python scripts/split_sdf.py data/crossdock2020/it2_tt_0_lowrmsd_mols_test0_fixed.types data/crossdock2020

Run

  • Train GraphBP from scratch:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main.py

Note: GraphBP can be trained on a 48GB GPU with batchsize=16. Our trained model is avaliable here.

  • Generate atoms in the 3D space with the trained model:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main_gen.py
  • Postprocess and then save the generated molecules:
CUDA_VISIBLE_DEVICES=${you_gpu_id} python main_eval.py

Reference

@article{liu2022graphbp,
      title={Generating 3D Molecules for Target Protein Binding},
      author={Meng Liu and Youzhi Luo and Kanji Uchino and Koji Maruhashi and Shuiwang Ji},
      journal={arXiv preprint arXiv:2204.09410},
      year={2022},
}
Owner
DIVE Lab, Texas A&M University
DIVE Lab, Texas A&M University
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
The versatile ocean simulator, in pure Python, powered by JAX.

Veros is the versatile ocean simulator -- it aims to be a powerful tool that makes high-performance ocean modeling approachable and fun. Because Veros

TeamOcean 245 Dec 20, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022