[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Overview

Counterfactual VQA (CF-VQA)

This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in CVPR 2021. This code is implemented as a fork of RUBi.

CF-VQA is proposed to capture and mitigate language bias in VQA from the view of causality. CF-VQA (1) captures the language bias as the direct causal effect of questions on answers, and (2) reduces the language bias by subtracting the direct language effect from the total causal effect.

If you find this paper helps your research, please kindly consider citing our paper in your publications.

@inproceedings{niu2020counterfactual,
  title={Counterfactual VQA: A Cause-Effect Look at Language Bias},
  author={Niu, Yulei and Tang, Kaihua and Zhang, Hanwang and Lu, Zhiwu and Hua, Xian-Sheng and Wen, Ji-Rong},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Summary

Installation

1. Setup and dependencies

Install Anaconda or Miniconda distribution based on Python3+ from their downloads' site.

conda create --name cfvqa python=3.7
source activate cfvqa
pip install -r requirements.txt

2. Download datasets

Download annotations, images and features for VQA experiments:

bash cfvqa/datasets/scripts/download_vqa2.sh
bash cfvqa/datasets/scripts/download_vqacp2.sh

Quick start

Train a model

The boostrap/run.py file load the options contained in a yaml file, create the corresponding experiment directory and start the training procedure. For instance, you can train our best model on VQA-CP v2 (CFVQA+SUM+SMRL) by running:

python -m bootstrap.run -o cfvqa/options/vqacp2/smrl_cfvqa_sum.yaml

Then, several files are going to be created in logs/vqacp2/smrl_cfvqa_sum/:

  • [options.yaml] (copy of options)
  • [logs.txt] (history of print)
  • [logs.json] (batchs and epochs statistics)
  • [_vq_val_oe.json] (statistics for the language-prior based strategy, e.g., RUBi)
  • [_cfvqa_val_oe.json] (statistics for CF-VQA)
  • [_q_val_oe.json] (statistics for language-only branch)
  • [_v_val_oe.json] (statistics for vision-only branch)
  • [_all_val_oe.json] (statistics for the ensembled branch)
  • ckpt_last_engine.pth.tar (checkpoints of last epoch)
  • ckpt_last_model.pth.tar
  • ckpt_last_optimizer.pth.tar

Many options are available in the options directory. CFVQA represents the complete causal graph while cfvqas represents the simplified causal graph.

Evaluate a model

There is no test set on VQA-CP v2, our main dataset. The evaluation is done on the validation set. For a model trained on VQA v2, you can evaluate your model on the test set. In this example, boostrap/run.py load the options from your experiment directory, resume the best checkpoint on the validation set and start an evaluation on the testing set instead of the validation set while skipping the training set (train_split is empty). Thanks to --misc.logs_name, the logs will be written in the new logs_predicate.txt and logs_predicate.json files, instead of being appended to the logs.txt and logs.json files.

python -m bootstrap.run \
-o ./logs/vqacp2/smrl_cfvqa_sum/options.yaml \
--exp.resume last \
--dataset.train_split ''\
--dataset.eval_split val \
--misc.logs_name test 

Useful commands

Use a specific GPU

For a specific experiment:

CUDA_VISIBLE_DEVICES=0 python -m boostrap.run -o cfvqa/options/vqacp2/smrl_cfvqa_sum.yaml

For the current terminal session:

export CUDA_VISIBLE_DEVICES=0

Overwrite an option

The boostrap.pytorch framework makes it easy to overwrite a hyperparameter. In this example, we run an experiment with a non-default learning rate. Thus, I also overwrite the experiment directory path:

python -m bootstrap.run -o cfvqa/options/vqacp2/smrl_cfvqa_sum.yaml \
--optimizer.lr 0.0003 \
--exp.dir logs/vqacp2/smrl_cfvqa_sum_lr,0.0003

Resume training

If a problem occurs, it is easy to resume the last epoch by specifying the options file from the experiment directory while overwritting the exp.resume option (default is None):

python -m bootstrap.run -o logs/vqacp2/smrl_cfvqa_sum/options.yaml \
--exp.resume last

Acknowledgment

Special thanks to the authors of RUBi, BLOCK, and bootstrap.pytorch, and the datasets used in this research project.

Owner
Yulei Niu
Yulei Niu
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Perspective"

Graph Neural Topic Model (GNTM) This is the pytorch implementation of the paper "Topic Modeling Revisited: A Document Graph-based Neural Network Persp

Dazhong Shen 8 Sep 14, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
An intelligent, flexible grammar of machine learning.

An english representation of machine learning. Modify what you want, let us handle the rest. Overview Nylon is a python library that lets you customiz

Palash Shah 79 Dec 02, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022