Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Overview

Lingvo

PyPI Python

Documentation

License

What is it?

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

A list of publications using Lingvo can be found here.

Table of Contents

Releases

PyPI Version Commit
0.10.0 075fd1d88fa6f92681f58a2383264337d0e737ee
0.9.1 c1124c5aa7af13d2dd2b6d43293c8ca6d022b008
0.9.0 f826e99803d1b51dccbbbed1ef857ba48a2bbefe
Older releases

PyPI Version Commit
0.8.2 93e123c6788e934e6b7b1fd85770371becf1e92e
0.7.2 b05642fe386ee79e0d88aa083565c9a93428519e

Details for older releases are unavailable.

Major breaking changes

NOTE: this is not a comprehensive list. Lingvo releases do not offer any guarantees regarding backwards compatibility.

HEAD

Nothing here.

0.10.0

  • General
    • The theta_fn arg to CreateVariable() has been removed.

0.9.1

  • General
    • Python 3.9 is now supported.
    • ops.beam_search_step now takes and returns an additional arg beam_done.
    • The namedtuple beam_search_helper.BeamSearchDecodeOutput now removes the field done_hyps.

0.9.0

  • General
    • Tensorflow 2.5 is now the required version.
    • Python 3.5 support has been removed.
    • py_utils.AddGlobalVN and py_utils.AddPerStepVN have been combined into py_utils.AddVN.
    • BaseSchedule().Value() no longer takes a step arg.
    • Classes deriving from BaseSchedule should implement Value() not FProp().
    • theta.global_step has been removed in favor of py_utils.GetGlobalStep().
    • py_utils.GenerateStepSeedPair() no longer takes a global_step arg.
    • PostTrainingStepUpdate() no longer takes a global_step arg.
    • The fatal_errors argument to custom input ops now takes error message substrings rather than integer error codes.
Older releases

0.8.2

  • General
    • NestedMap Flatten/Pack/Transform/Filter etc now expand descendent dicts as well.
    • Subclasses of BaseLayer extending from abc.ABCMeta should now extend base_layer.ABCLayerMeta instead.
    • Trying to call self.CreateChild outside of __init__ now raises an error.
    • base_layer.initializer has been removed. Subclasses no longer need to decorate their __init__ function.
    • Trying to call self.CreateVariable outside of __init__ or _CreateLayerVariables now raises an error.
    • It is no longer possible to access self.vars or self.theta inside of __init__. Refactor by moving the variable creation and access to _CreateLayerVariables. The variable scope is set automatically according to the layer name in _CreateLayerVariables.

Details for older releases are unavailable.

Quick start

Installation

There are two ways to set up Lingvo: installing a fixed version through pip, or cloning the repository and building it with bazel. Docker configurations are provided for each case.

If you would just like to use the framework as-is, it is easiest to just install it through pip. This makes it possible to develop and train custom models using a frozen version of the Lingvo framework. However, it is difficult to modify the framework code or implement new custom ops.

If you would like to develop the framework further and potentially contribute pull requests, you should avoid using pip and clone the repository instead.

pip:

The Lingvo pip package can be installed with pip3 install lingvo.

See the codelab for how to get started with the pip package.

From sources:

The prerequisites are:

  • a TensorFlow 2.6 installation,
  • a C++ compiler (only g++ 7.3 is officially supported), and
  • the bazel build system.

Refer to docker/dev.dockerfile for a set of working requirements.

git clone the repository, then use bazel to build and run targets directly. The python -m module commands in the codelab need to be mapped onto bazel run commands.

docker:

Docker configurations are available for both situations. Instructions can be found in the comments on the top of each file.

How to install docker.

Running the MNIST image model

Preparing the input data

pip:

mkdir -p /tmp/mnist
python3 -m lingvo.tools.keras2ckpt --dataset=mnist

bazel:

mkdir -p /tmp/mnist
bazel run -c opt //lingvo/tools:keras2ckpt -- --dataset=mnist

The following files will be created in /tmp/mnist:

  • mnist.data-00000-of-00001: 53MB.
  • mnist.index: 241 bytes.

Running the model

pip:

cd /tmp/mnist
curl -O https://raw.githubusercontent.com/tensorflow/lingvo/master/lingvo/tasks/image/params/mnist.py
python3 -m lingvo.trainer --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log

bazel:

(cpu) bazel build -c opt //lingvo:trainer
(gpu) bazel build -c opt --config=cuda //lingvo:trainer
bazel-bin/lingvo/trainer --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr

After about 20 seconds, the loss should drop below 0.3 and a checkpoint will be saved, like below. Kill the trainer with Ctrl+C.

trainer.py:518] step:   205, steps/sec: 11.64 ... loss:0.25747201 ...
checkpointer.py:115] Save checkpoint
checkpointer.py:117] Save checkpoint done: /tmp/mnist/log/train/ckpt-00000205

Some artifacts will be produced in /tmp/mnist/log/control:

  • params.txt: hyper-parameters.
  • model_analysis.txt: model sizes for each layer.
  • train.pbtxt: the training tf.GraphDef.
  • events.*: a tensorboard events file.

As well as in /tmp/mnist/log/train:

  • checkpoint: a text file containing information about the checkpoint files.
  • ckpt-*: the checkpoint files.

Now, let's evaluate the model on the "Test" dataset. In the normal training setup the trainer and evaler should be run at the same time as two separate processes.

pip:

python3 -m lingvo.trainer --job=evaler_test --run_locally=cpu --mode=sync --model=mnist.LeNet5 --logdir=/tmp/mnist/log

bazel:

bazel-bin/lingvo/trainer --job=evaler_test --run_locally=cpu --mode=sync --model=image.mnist.LeNet5 --logdir=/tmp/mnist/log --logtostderr

Kill the job with Ctrl+C when it starts waiting for a new checkpoint.

base_runner.py:177] No new check point is found: /tmp/mnist/log/train/ckpt-00000205

The evaluation accuracy can be found slightly earlier in the logs.

base_runner.py:111] eval_test: step:   205, acc5: 0.99775392, accuracy: 0.94150388, ..., loss: 0.20770954, ...

Running the machine translation model

To run a more elaborate model, you'll need a cluster with GPUs. Please refer to third_party/py/lingvo/tasks/mt/README.md for more information.

Running the GShard transformer based giant language model

To train a GShard language model with one trillion parameters on GCP using CloudTPUs v3-512 using 512-way model parallelism, please refer to third_party/py/lingvo/tasks/lm/README.md for more information.

Running the 3d object detection model

To run the StarNet model using CloudTPUs on GCP, please refer to third_party/py/lingvo/tasks/car/README.md.

Models

Automatic Speech Recognition

Car

Image

Language Modelling

Machine Translation

References

Please cite this paper when referencing Lingvo.

@misc{shen2019lingvo,
    title={Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling},
    author={Jonathan Shen and Patrick Nguyen and Yonghui Wu and Zhifeng Chen and others},
    year={2019},
    eprint={1902.08295},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

License

Apache License 2.0

PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

Zijian Feng 325 Dec 29, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
FaceAnon - Anonymize people in images and videos using yolov5-crowdhuman

Face Anonymizer Blur faces from image and video files in /input/ folder. Require

22 Nov 03, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Official implementation of "Implicit Neural Representations with Periodic Activation Functions"

Implicit Neural Representations with Periodic Activation Functions Project Page | Paper | Data Vincent Sitzmann*, Julien N. P. Martel*, Alexander W. B

Vincent Sitzmann 1.4k Jan 06, 2023
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Code and Data for NeurIPS2021 Paper "A Dataset for Answering Time-Sensitive Questions"

Time-Sensitive-QA The repo contains the dataset and code for NeurIPS2021 (dataset track) paper Time-Sensitive Question Answering dataset. The dataset

wenhu chen 35 Nov 14, 2022