Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Related tags

Deep Learningrcan-it
Overview

Revisiting RCAN: Improved Training for Image Super-Resolution

Introduction

Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight. However, most SR models were optimized with dated training strategies. In this work, we revisit the popular RCAN model and examine the effect of different training options in SR. Surprisingly (or perhaps as expected), we show that RCAN can outperform or match nearly all the CNN-based SR architectures published after RCAN on standard benchmarks with a proper training strategy and minimal architecture change. Besides, although RCAN is a very large SR architecture with more than four hundred convolutional layers, we draw a notable conclusion that underfitting is still the main problem restricting the model capability instead of overfitting. We observe supportive evidence that increasing training iterations clearly improves the model performance while applying regularization techniques generally degrades the predictions. We denote our simply revised RCAN as RCAN-it and recommend practitioners to use it as baselines for future research. Please check our pre-print for more information.

Environment Setup

Create a new conda environment and install PyTorch:

conda create -n ptsr python=3.8 numpy
conda activate ptsr
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 -c pytorch -c nvidia

Install the required packages:

git clone https://github.com/zudi-lin/rcan-it.git
cd rcan-it
pip install --editable .

Our package is called ptsr, abbreviating A PyTorch Framework for Image Super-Resolution. Then run tests to validate the installation:

python -m unittest discover -b tests

Multi-processing Distributed Data Parallel Training

For different hardware conditions, please first update the config files accordingly. Even for single-node single-GPU training, we use distributed data parallel (DDP) for consistency.

Single Node

Single GPU training:

CUDA_VISIBLE_DEVICES=0 python -u -m torch.distributed.run --nproc_per_node=1 \
--master_port=9988 main.py --distributed --config-base configs/RCAN/RCAN_Improved.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

Single node with multiple (e.g., 4) GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python -u -m torch.distributed.run --nproc_per_node=4 \
--master_port=9977 main.py --distributed --config-base configs/RCAN/RCAN_Improved.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

By default the configuration file, model checkpoints and validation curve will be saved under outputs/, which is added to .gitignore and will be untracked by Git.

Multiple Nodes

After activating the virtual environment with PyTorch>=1.9.0, run hostname -I | awk '{print $1}' to get the ip address of the master node. Suppose the master ip address is 10.31.133.85, and we want to train the model on two nodes with multiple GPUs, then the commands are:

Node 0 (master node):

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 \ 
--node_rank=0 --master_addr="10.31.133.85" --master_port=9922 main.py --distributed \
--config-base configs/RCAN/RCAN_Improved.yaml --config-file configs/RCAN/RCAN_x2.yaml

Node 1:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 \ 
--node_rank=1 --master_addr="10.31.133.85" --master_port=9922 main.py --distributed \
--config-base configs/RCAN/RCAN_Improved.yaml --config-file configs/RCAN/RCAN_x2.yaml

Description of the options:

  • --nproc_per_node: number of processes on each node. Set this to the number of GPUs on the node to maximize the training efficiency.
  • --nnodes: total number of nodes for training.
  • --node_rank: rank of the current node within all nodes.
  • --master_addr: the ip address of the master (rank 0) node.
  • --master_port: a free port to communicate with the master node.
  • --distributed: multi-processing Distributed Data Parallel (DDP) training.
  • --local_world_size: number of GPUs on the current node.

For a system with Slurm Workload Manager, please load required modules: module load cuda cudnn.

Data Parallel Training

Data Parallel training only works on single node with one or multiple GPUs. Different from the DDP scheme, it will create only one process. Single GPU training:

CUDA_VISIBLE_DEVICES=0 python main.py --config-base configs/RCAN/RCAN_Base.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

Single node with multiple (e.g., 4) GPUs:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config-base configs/RCAN/RCAN_Base.yaml \
--config-file configs/RCAN/RCAN_x2.yaml

Citation

Please check this pre-print for details. If you find this work useful for your research, please cite:

@misc{lin2022revisiting,
      title={Revisiting RCAN: Improved Training for Image Super-Resolution}, 
      author={Zudi Lin and Prateek Garg and Atmadeep Banerjee and Salma Abdel Magid and Deqing Sun and Yulun Zhang and Luc Van Gool and Donglai Wei and Hanspeter Pfister},
      year={2022},
      eprint={2201.11279},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Zudi Lin
CS Ph.D. student at Harvard
Zudi Lin
Transformer based SAR image despeckling

Transformer based SAR image despeckling Using the code: The code is stable while using Python 3.6.13, CUDA =10.1 Clone this repository: git clone htt

27 Nov 13, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Open-source implementation of Google Vizier for hyper parameters tuning

Advisor Introduction Advisor is the hyper parameters tuning system for black box optimization. It is the open-source implementation of Google Vizier w

tobe 1.5k Jan 04, 2023
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021