Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

Overview

AutomaticUSnavigation

Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation. We will start by investigating navigation in the XCAT phantom volumes, then integrate our cycleGAN model to the pipeline to perform navigation in US domain. We also test navigation on clinical CT scans.

example of agents navigating in a test XCAT phantom volume (not seen at train time)

The agent is in control of moving 3 points in a 3D volume, which will sample the corresponding plane. We aim to model the agent to learn to move towards 4-chamber views. We define such views as the plane passing through the centroids of the Left Ventricle, Right Ventricle and Right Atrium (XCAT volumes come with semantic segmentations). We reward the agent when it moves towards this goal plane, and when the number of pixels of tissues of interest present in the current plane increase (see rewards/rewards.py fro more details). Furthermore, we add some good-behaviour inducing reards: we maximize the area of the triangle spanned by the agents and we penalize the agents for moving outside of the volumes boundaries. The former encourages smooth transitions (if the agents are clustered close together we would get abrupt transitions) the latter makes sure that the agents stay within the boundaries of the environment. The following animation shows agents navigating towards a 4-Chamber view on a test XCAT volume, agents are initialized randomly within the volume.

trained agent acting greedily.
Fig 1: Our best agent acting greedily for 250 steps after random initialization. Our full agent consists of 3 sub-agents, each controlling the movement of 1 point in a 3D space. As each agent moves around the 3 points will sample a particular view of the CT volume.

example of agents navigating in clinical CTs

We than upgrade our pipeline generating realistic fake CT volumes using Neural Style Transfer on our XCAT volumes. We will generate volumes which aim to resemble CT texture while retaining XCAT content. We train the agents in the same manner on this new simulated environment and we test practicality both on unseen fake CT volumes and on clinical volumes from LIDC-IDRI dataset.

trained agent acting greedily on fake CT. trained agent acting greedily on real CT.
Fig 2: Left) Our best agent acting greedily on a test fake CT volume for 125 steps after random initialization. Right) same agents tested on clinical CT data.

example of agents navigating on synthetic US

We couple our navigation framework with a CycleGAN that transforms XCAT slices into US images on the fly. Our CycleGAN model is not perfect yet and we are limited to contrain the agent within +/- 20 pixels from the goal plane. Note that we invert intensities of the XCAT images to facilitate the translation process.

trained agent acting greedily on US environment.
Fig 1: Our best agent acting greedily for 50 steps after initialization within +/- 20 pixels from the goal plane. The XCAT volume is used a proxy for navigation in US domain.

usage

  1. clone the repo and install dependencies
git clone [email protected]:CesareMagnetti/AutomaticUSnavigation.git
cd AutomaticUSnavigation
python3 -m venv env
source env/bin/activate
pip install -r requirements
  1. if you don't want to integrate the script with weights and biases run scripts with the additional --wandb disabled flag.

  2. train our best agents on 15 XCAT volumes (you must generate these yourself). It will save results to ./results/ and checkpoints to ./checkpoints/. Then test the agent 100 times on all available volumes (in our case 20) and generate some test trajectories to visualize results.

python train.py --name 15Volume_both_terminateOscillate_Recurrent --dataroot [path/to/XCAT/volumes] --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14 --anatomyRewardWeight 1 --planeDistanceRewardWeight 1 --incrementalAnatomyReward --termination oscillate --exploring_steps 0 --recurrent --batch_size 8 --update_every 15

python test.py --name 15Volume_both_terminateOscillate_Recurrent --dataroot [path/to/XCAT/volumes] --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14,
samp15,samp16,samp17,samp18,samp19 --n_runs 2000 --load latest --fname quantitative_metrics

python test_trajectory.py --name 15Volume_both_terminateOscillate_Recurrent --dataroot [path/to/XCAT/volumes] --volume_ids samp15,samp16,samp17,samp18,samp19 --n_steps 250 --load latest
  1. train our best agent on the fake CT volumes (we can then test on real CT data).
python make_XCAT_volumes_realistic.py --dataroot [path/to/XCAT/volumes] --saveroot [path/to/save/fakeCT/volumes] --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14,
samp15,samp16,samp17,samp18,samp19 --style_imgs [path/to/style/realCT/images] --window 3

python train.py --name 15Volume_CT_both_terminateOscillate_Recurrent_smoothedVolumes_lessSteps --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14 --anatomyRewardWeight 1 --planeDistanceRewardWeight 1 --incrementalAnatomyReward --termination oscillate --exploring_steps 0 --recurrent --batch_size 8 --update_every 15 --dataroot [path/to/fakeCT/volumes] --load_size 128 --no_preprocess --n_steps_per_episode 125 --buffer_size 25000 --randomize_intensities

python test_trajectory.py --name 15Volume_CT_both_terminateOscillate_Recurrent_smoothedVolumes_lessSteps --dataroot [path-to/realCT/volumes] --volume_ids 128_LIDC-IDRI-0101,128_LIDC-IDRI-0102 --load latest --n_steps 125 --no_preprocess --realCT
  1. train our best agent on fake US environment
python train.py --name 15Volumes_easyObjective20_CT2USbestModel_bestRL --easy_objective --n_steps_per_episode 50 --buffer_size 10000 --volume_ids samp0,samp1,samp2,samp3,samp4,samp5,samp6,samp7,samp8,samp9,samp10,samp11,samp12,samp13,samp14 --dataroot [path/to/XCAT/volumes(must rotate)] --anatomyRewardWeight 1 --planeDistanceRewardWeight 1 --incrementalAnatomyReward --termination oscillate --exploring_steps 0 --batch_size 8 --update_every 12 --recurrent --CT2US --ct2us_model_name bestCT2US

python test_trajectory.py --name 15Volumes_easyObjective20_CT2USbestModel_bestRL --dataroot [path/to/XCAT/volumes(must rotate)] --volume_ids samp15,samp16,samp17,samp18,samp19 --easy_objective --n_steps 50 --CT2US --ct2us_model_name bestCT2US --load latest

Acknowledgements

Work done with the help of Hadrien Reynaud. Our CT2US models are built upon the CT2US simulation repo, which itself is heavily based on CycleGAN-and-pix2pix and CUT repos.

Owner
Cesare Magnetti
Cesare Magnetti
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News December 27: v1.1.0 New loss functions: CentroidTripletLoss and VICRegLoss Mean reciprocal rank + per-class accuracies See the release notes Than

Kevin Musgrave 5k Jan 05, 2023
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

Yifan Wang 66 Nov 08, 2022