PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Overview

Bridging the Visual Gap: Wide-Range Image Blending

PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".
You can visit our project website here.

In this paper, we propose a novel model to tackle the problem of wide-range image blending, which aims to smoothly merge two different images into a panorama by generating novel image content for the intermediate region between them.

Paper

Bridging the Visual Gap: Wide-Range Image Blending
Chia-Ni Lu, Ya-Chu Chang, Wei-Chen Chiu
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Please cite our paper if you find it useful for your research.

@InProceedings{lu2021bridging,
    author = {Lu, Chia-Ni and Chang, Ya-Chu and Chiu, Wei-Chen},
    title = {Bridging the Visual Gap: Wide-Range Image Blending},
    booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2021}
}

Installation

  • This code was developed with Python 3.7.4 & Pytorch 1.0.0 & CUDA 9.2
  • Other requirements: numpy, skimage, tensorboardX
  • Clone this repo
git clone https://github.com/julia0607/Wide-Range-Image-Blending.git
cd Wide-Range-Image-Blending

Testing

Download our pre-trained model weights from here and put them under weights/.

Test the sample data provided in this repo:

python test.py

Or download our paired test data from here and put them under data/.
Then run the testing code:

python test.py --test_data_dir_1 ./data/scenery6000_paired/test/input1/
               --test_data_dir_2 ./data/scenery6000_paired/test/input2/

Run your own data:

python test.py --test_data_dir_1 YOUR_DATA_PATH_1
               --test_data_dir_2 YOUR_DATA_PATH_2
               --save_dir YOUR_SAVE_PATH

If your test data isn't paired already, add --rand_pair True to randomly pair the data.

Training

We adopt the scenery dataset proposed by Very Long Natural Scenery Image Prediction by Outpainting for conducting our experiments, in which we split the dataset to 5040 training images and 1000 testing images.

Download the dataset with our split of train and test set from here and put them under data/.
You can unzip the .zip file with jar xvf scenery6000_split.zip.
Then run the training code for self-reconstruction stage (first stage):

python train_SR.py

After finishing the training of self-reconstruction stage, move the latest model weights from checkpoints/SR_Stage/ to weights/, and run the training code for fine-tuning stage (second stage):

python train_FT.py --load_pretrain True

Train the model with your own dataset:

python train_SR.py --train_data_dir YOUR_DATA_PATH

After finishing the training of self-reconstruction stage, move the latest model weights to weights/, and run the training code for fine-tuning stage (second stage):

python train_FT.py --load_pretrain True
                   --train_data_dir YOUR_DATA_PATH

If your train data isn't paired already, add --rand_pair True to randomly pair the data in the fine-tuning stage.

TensorBoard Visualization

Visualization on TensorBoard for training and validation is supported. Run tensorboard --logdir YOUR_LOG_DIR to view training progress.

Acknowledgments

Our code is partially based on Very Long Natural Scenery Image Prediction by Outpainting and a pytorch re-implementation for Generative Image Inpainting with Contextual Attention.
The implementation of ID-MRF loss is borrowed from Image Inpainting via Generative Multi-column Convolutional Neural Networks.

Owner
Chia-Ni Lu
Chia-Ni Lu
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021