Video Frame Interpolation with Transformer (CVPR2022)

Overview

VFIformer

Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer

Dependencies

  • python >= 3.8
  • pytorch >= 1.8.0
  • torchvision >= 0.9.0

Prepare Dataset

  1. Vimeo90K Triplet dataset
  2. MiddleBury Other dataset
  3. UCF101 dataset
  4. SNU-FILM dataset

To train on the Vimeo90K, we have to first compute the ground-truth flows between frames using Lite-flownet, you can clone the Lite-flownet repo and put compute_flow_vimeo.py we provide under its main directory and run (remember to change the data path):

python compute_flow_vimeo.py

Get Started

  1. Clone this repo.
    git clone https://github.com/Jia-Research-Lab/VFIformer.git
    cd VFIformer
    
  2. Modify the argument --data_root in train.py according to your Vimeo90K path.

Evaluation

  1. Download the pre-trained models and place them into the pretrained_models/ folder.

    • Pre-trained models can be downloaded from Google Drive
      • pretrained_VFIformer: the final model in the main paper
      • pretrained_VFIformerSmall: the smaller version of the model mentioned in the supplementary file
  2. Test on the Vimeo90K testing set.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    

    If you want to test with the smaller model, please change the --net_name and --resume accordingly:

    python test.py --data_root [your Vimeo90K path] --testset VimeoDataset --net_name VFIformerSmall --resume ./pretrained_models/pretrained_VFIformerSmall/net_220.pth --save_result
    

    The testing results are saved in the test_results/ folder. If you do not want to save the image results, you can remove the --save_result argument in the commands optionally.

  3. Test on the MiddleBury dataset.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your MiddleBury path] --testset MiddleburyDataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    
  4. Test on the UCF101 dataset.

    Modify the argument --data_root according to your data path, run:

    python test.py --data_root [your UCF101 path] --testset UFC101Dataset --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth --save_result
    
  5. Test on the SNU-FILM dataset.

    Modify the argument --data_root according to your data path. Choose the motion level and modify the argument --test_level accordingly, run:

    python FILM_test.py --data_root [your SNU-FILM path] --test_level [easy/medium/hard/extreme] --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth
    

Training

  1. First train the flow estimator. (Note that skipping this step will not cause a significant impact on performance. We keep this step here only to be consistent with our paper.)
    python -m torch.distributed.launch --nproc_per_node=4 --master_port=4174 train.py --launcher pytorch --gpu_ids 0,1,2,3 \
            --loss_flow --use_tb_logger --batch_size 48 --net_name IFNet --name train_IFNet --max_iter 300 --crop_size 192 --save_epoch_freq 5
    
  2. Then train the whole framework.
    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4175 train.py --launcher pytorch --gpu_ids 0,1,2,3,4,5,6,7 \
            --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformer --name train_VFIformer --max_iter 300 \
            --crop_size 192 --save_epoch_freq 5 --resume_flownet ./weights/train_IFNet/snapshot/net_final.pth
    
  3. To train the smaller version, run:
    python -m torch.distributed.launch --nproc_per_node=8 --master_port=4175 train.py --launcher pytorch --gpu_ids 0,1,2,3,4,5,6,7 \
            --loss_l1 --loss_ter --loss_flow --use_tb_logger --batch_size 24 --net_name VFIformerSmall --name train_VFIformerSmall --max_iter 300 \
            --crop_size 192 --save_epoch_freq 5 --resume_flownet ./weights/train_IFNet/snapshot/net_final.pth
    

Test on your own data

  1. Modify the arguments --img0_path and --img1_path according to your data path, run:
    python demo.py --img0_path [your img0 path] --img1_path [your img1 path] --save_folder [your save path] --net_name VFIformer --resume ./pretrained_models/pretrained_VFIformer/net_220.pth
    

Acknowledgement

We borrow some codes from RIFE and SwinIR. We thank the authors for their great work.

Citation

Please consider citing our paper in your publications if it is useful for your research.

@inproceedings{lu2022vfiformer,
    title={Video Frame Interpolation with Transformer},
    author={Liying Lu, Ruizheng Wu, Huaijia Lin, Jiangbo Lu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2022},
}

Contact

[email protected]

Owner
DV Lab
Deep Vision Lab
DV Lab
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Implementation for the EMNLP 2021 paper "Interactive Machine Comprehension with Dynamic Knowledge Graphs".

Interactive Machine Comprehension with Dynamic Knowledge Graphs Implementation for the EMNLP 2021 paper. Dependencies apt-get -y update apt-get instal

Xingdi (Eric) Yuan 19 Aug 23, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022